
www.manaraa.com

Master Thesis
Software Engineering
Thesis no: MSE-2012-99
September 2012

Software development in
startup companies

Carmine Giardino

Nicolò Paternoster

This thesis is presented as part of Degree of
European Master in Software Engineering

School of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona
Sweden



www.manaraa.com

This thesis is submitted to the School of Computing at Blekinge Institute of Technology
in partial fulfillment of the requirements for the degree of Master of Science in Software
Engineering. The thesis is equivalent to 2 x 20 weeks of full time studies.

Contact Information:
Authors:
Carmine Giardino [870910-T573]
E-mail: carmine.giardino@gmail.com

Nicoló Paternoster [861218-T753]
E-mail: paternoster.nicolo@gmail.com

University advisors:
Prof. Tony Gorschek
Blekinge Institute of Technology

Prof. Pekka Abrahamsson
Free University of Bolzano

School of Computing
Blekinge Institute of Technology Internet : www.bth.se/com
SE-371 79 Karlskrona Phone : +46 455 38 50 00
Sweden Fax : +46 455 38 50 57



www.manaraa.com

Abstract

Context . Software startups are newly created companies with no operating history and are
extremely fast in producing cutting-edge technologies. These companies develop software un-
der highly uncertain conditions, tackling fast growing markets with severe lack of resources.
Startups present an unique combination of characteristics which pose several challenges to the
software development activities, creating interesting problems for software engineers. However,
despite the increasing economical importance and the high failure rate, there are only a few sci-
entific studies attempting to address software engineering (SE) issues, especially for early-stages
startups. In a context where a wrong decision can easily lead the entire business to failure, the
support of SE can contribute to foster performances of startups and making a big impact on a
large number of companies.

Objective . In view of a lack of primary studies, the first step to attending the software
development strategies with scientific and engineering approaches is by an understanding of the
startups’ behavior. For this reason this research aims to understand how software development
strategies are engineered by practitioners, in the period of time that goes from idea conception
to the first open beta release of the software product.

Methods. This research combines a systematic review of the state-of-the-art with a cross-
sectional case study conducted in 13 web startups recently founded and distributed in di↵erent
geographic areas and market sectors. A grounded theory approach guided the execution of a sys-
tematic mapping study, integrated with semi-structured interviews and follow-up questionnaires
to explore the state-of-practice.

Results. We selected, classified and evaluated 37 relevant studies. The systematic review
revealed that the studies which constitute the body of knowledge are generally not rigorously
designed and executed, make use of inconsistent terminology, and cover only small samples
of startups. Moreover, we extrapolated concepts from the case study to form a theoretical
model, explaining the underlying phenomenon of software development in early-stage startups.
The model is grounded in the empirical data and its explanatory power was further validated
through a systematic procedure. Finally we proposed a multi-faceted evolutionary model to
describe the dynamics of the software development after the first product release.

Conclusions. The research provided a wide set of evidences fostering the understanding of
how software development is structured and executed, from idea conception to the first release.
The results revealed the urgent priority of startups of releasing the product as quickly as possi-
ble to verify the product/market fit and to adjust the business and product trajectory according
to the early collected user feedbacks. Nevertheless, the initial gain obtained in speeding-up the
development by low-precision and product-centric engineering activities is counterbalanced by
the need of restructuring the product and the workflows before setting o↵ for further grow.
In fact, when user requests and company’s size start to increase startups face an initial and
temporary drop-down in productivity, creating the need of mitigation strategies to find a sweet
spot between being fast enough to enter the market early while controlling the amount of accu-
mulated technical debt. The conclusions can be generalized with a good degree of confidence to
the majority of early-stage software startups involved in the production of innovative products,
especially for web and mobile applications.

Keywords: Software development; Startups; Theoretical model; Grounded theory.

i



www.manaraa.com

Acknowledgments

First and foremost, we owe sincere thankfulness to our research supervisors - Profs. Tony
Gorschek and Pekka Abrahamsson - who made us believe in ourselves and supported us through-
out the research process while allowing us the room to work in our own way.

We are truly indebted and thankful towards the two institutions that contributed to develop
our knowledge during our two-years European Master program in Software Engineering: the
Blekinge Institute of Technology and the Free University of Bolzano. Working in an environment
constituted by top-ranking professors in SE has been an unique opportunity for us. We would
like to show our gratitude to Barbara Russo, Darja Šmite, Kai Petersen, Ludwik Kuzniarz,
Claes Wohlin, Emilia Mendes, Alberto Sillitti and Gabriella Dodero for their assistance.

We would like to show our gratitude to other researchers, librarians and colleagues for their
stimulating discussions and morale support. In particular we thank Michael Unterkalmsteiner
for revising the entire thesis and giving precious advices. Moreover we thank for the revi-
sions conducted by Ali Nauman Bin, Tobias Pfei↵er, Jürgen Börstler, Hassan (Gilani), Waqas
Rasheed Qureshi, Chaitanya Gurram and Krishna Sandeep Taduri.

We would like to thank all the CTOs and CEOs of the startups that participated to the
case study, subtracting personal time out of their busy schedule. This thesis would not have
been possible without their e↵ort.

Further, this thesis is completed thanks to the support of our families, who understanded
and encouraged the long work on our research.

We would like to show our gratitude to Max Marmer, Paul Grahm, Eric Ries, Steven Blank,
Dave Snowden and Gerry Coleman that through their inspirational works enriched and fostered
our knowledge of the field.

We are obliged to many of our colleagues who supported us during our studies: Santiago,
Olesia, Ali (Demirsson), Tomasz, Sebastian, Tiago, Tony, Daniel (Graziotin), Adam, Hassan,
Farnaz and all the EMSE students and alumni.

Last but not the least, we would like to thank our friends for their patience and support
throughout di�cult moments of our life. Thank you Antonella, Gemma, Bentt, Paolo (Lom-
bardi), Åsa, Massimo, Marco (Valente), Marshed, Selma ,Daniel (Masero), Die Atzen, Aitor,
Alicia, Martin, David, Eva, Piazza Verdi WG, the erasmus group of Karlskrona, Carmine
(Giardino), Mariagrazia, Manuel, Ermanno, Enrico, Oto, Luca, Vincenzo, Luigi, Giuseppe,
Francesco, Marilita, Giusy, Monica, Carmine (Serluca), Stefano, Claudio, Virginio, Giuseppe
(Sorce), Valerio (Raco), Mario, Dan, Shen, Akira, Cristina, Mattia, Mirza, Rebecca, Manuele,
Cicco, Sandro, Valerio, Riccardo, Flavia, Marco (Soave), Stefania, Arturo (Moleti), Paolo Emilio
and all the others that are not mentioned here.

It is a great pleasure to thank everyone who helped us write our thesis successfully and
gave us this extraordinary learning opportunity.

“The best way to predict the future is to invent it.” - Alan Kay

ii



www.manaraa.com

Contents

Abstract i

Acknowledgments ii

1 Introduction 1

2 Background 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Software development in startups . . . . . . . . . . . . . . . . . . 6
2.3 Related areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Engineering in small companies . . . . . . . . . . . . . . . 8
2.3.2 Web engineering . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Lean startup methodology . . . . . . . . . . . . . . . . . . 9
2.3.4 Venture management and financing . . . . . . . . . . . . . 10

3 Related work 12

4 Research methodology 16
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Research goal definition . . . . . . . . . . . . . . . . . . . 17
4.1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Research methodology overview . . . . . . . . . . . . . . . 18
4.1.4 Rationale for methodology selection . . . . . . . . . . . . . 19

4.2 Systematic mapping study . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 SMS - Process Overview . . . . . . . . . . . . . . . . . . . 22
4.2.2 SMS - Operation . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 SMS - Screening of papers . . . . . . . . . . . . . . . . . . 25
4.2.4 SMS - Keywording . . . . . . . . . . . . . . . . . . . . . . 27
4.2.5 SMS - Data extraction and mapping . . . . . . . . . . . . 28
4.2.6 SMS - Rigor-relevance assessment . . . . . . . . . . . . . . 28
4.2.7 SMS - Ranking of studies . . . . . . . . . . . . . . . . . . 30
4.2.8 SMS - Validity threats . . . . . . . . . . . . . . . . . . . . 30

4.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Case study - Overview . . . . . . . . . . . . . . . . . . . . 33

iii



www.manaraa.com

4.3.2 Case study - Design and execution . . . . . . . . . . . . . 38
4.3.3 Case study - Data collection . . . . . . . . . . . . . . . . . 49
4.3.4 Case study - Data analysis . . . . . . . . . . . . . . . . . . 50
4.3.5 Case study - Theory generation . . . . . . . . . . . . . . . 52
4.3.6 Case study - Theory validation . . . . . . . . . . . . . . . 53
4.3.7 Case study - Framework modelling . . . . . . . . . . . . . 56
4.3.8 Case study - Validity threats . . . . . . . . . . . . . . . . . 56

5 Results and analysis 60
5.1 Systematic mapping study . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Publications distribution . . . . . . . . . . . . . . . . . . . 60
5.1.2 Rigor and relevance . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Contextual features of startups . . . . . . . . . . . . . . . 74
5.1.4 State-of-the-art: summary (RQ-1) . . . . . . . . . . . . . . 77

5.2 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1 Companies distribution . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Coding process overview . . . . . . . . . . . . . . . . . . . 83
5.2.3 Follow-up questionnaires results . . . . . . . . . . . . . . . 84
5.2.4 Comparison of methodologies: interviews and questionnaires 89

6 Theoretical model 92
6.1 Introduction to the model . . . . . . . . . . . . . . . . . . . . . . 92
6.2 High-level framework . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Detailed framework . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Severe lack of resources (CAT7) . . . . . . . . . . . . . . . 97
6.3.2 Team is the catalyst of development (CAT4) . . . . . . . . 97
6.3.3 Evolutionary approach (CAT2) . . . . . . . . . . . . . . . 99
6.3.4 Product quality has low priority (CAT3) . . . . . . . . . . 101
6.3.5 Speed-up development (CAT1) . . . . . . . . . . . . . . . 102
6.3.6 Accumulated technical debt (CAT5) . . . . . . . . . . . . 105
6.3.7 Initial growth hinders productivity (CAT6) . . . . . . . . . 107

6.4 Theory generation . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Theory implications (RQ-2) . . . . . . . . . . . . . . . . . . . . . 111
6.6 Theory validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6.1 Comparison with other frameworks . . . . . . . . . . . . . 116
6.6.2 Theoretical categories and existing literature . . . . . . . . 120
6.6.3 Confounding factors from the literature . . . . . . . . . . . 127
6.6.4 High-level relations validity . . . . . . . . . . . . . . . . . 131
6.6.5 Engineering elements and categories . . . . . . . . . . . . . 136
6.6.6 Summary of validation . . . . . . . . . . . . . . . . . . . . 138

6.7 Generalizability of the theory . . . . . . . . . . . . . . . . . . . . 139

iv



www.manaraa.com

7 Dynamics and evolution of startups 141
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Early-stage startups and methodologies . . . . . . . . . . . . . . . 141
7.3 Complexity and chaos in startups . . . . . . . . . . . . . . . . . . 143

7.3.1 Cynefin dynamics in startups . . . . . . . . . . . . . . . . 145
7.4 Early-stage startup lifecycle . . . . . . . . . . . . . . . . . . . . . 147
7.5 Evolutionary model . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5.1 Integrating scalable solutions . . . . . . . . . . . . . . . . 153
7.5.2 Performance drop-down . . . . . . . . . . . . . . . . . . . 153
7.5.3 Improve desirable workflow patterns . . . . . . . . . . . . 155
7.5.4 Long-term performance . . . . . . . . . . . . . . . . . . . . 156

7.6 Dynamics and evolution summary (RQ-3) . . . . . . . . . . . . . 156

8 Summary 158
8.1 RQ 1 - State of the art . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 RQ 2 - State of practice . . . . . . . . . . . . . . . . . . . . . . . 159
8.3 RQ 3 - Dynamics and evolution in startups . . . . . . . . . . . . . 161
8.4 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.5 Validity threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.5.1 External validity . . . . . . . . . . . . . . . . . . . . . . . 164
8.5.2 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . 165
8.5.3 Construct validity . . . . . . . . . . . . . . . . . . . . . . . 166
8.5.4 Conclusion validity . . . . . . . . . . . . . . . . . . . . . . 167

8.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9 Conclusions 170

References 172

A Appendix 184
A.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.2 Related areas review . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.2.1 Managing software startups . . . . . . . . . . . . . . . . . 186
A.2.2 Software Engineering in the small . . . . . . . . . . . . . . 187
A.2.3 Web engineering . . . . . . . . . . . . . . . . . . . . . . . 187
A.2.4 Lean/Agile development . . . . . . . . . . . . . . . . . . . 188
A.2.5 Grey literature Review . . . . . . . . . . . . . . . . . . . . 189
A.2.6 Lifecycle models . . . . . . . . . . . . . . . . . . . . . . . . 192

A.3 Systematic mapping study details . . . . . . . . . . . . . . . . . . 194
A.3.1 Search Strings . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.3.2 Selected studies overview . . . . . . . . . . . . . . . . . . . 195
A.3.3 Ranking quantification . . . . . . . . . . . . . . . . . . . . 199

A.4 Case study details . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

v



www.manaraa.com

A.4.1 Interview package content . . . . . . . . . . . . . . . . . . 201
A.4.2 Interview questions . . . . . . . . . . . . . . . . . . . . . . 204
A.4.3 Interviews - Open coding . . . . . . . . . . . . . . . . . . . 206
A.4.4 Interviews - Axial coding . . . . . . . . . . . . . . . . . . . 218
A.4.5 Categories and engineering elements . . . . . . . . . . . . 219

A.5 Technical debt, potential capability and speed measurement . . . 222
A.5.1 Potential capability . . . . . . . . . . . . . . . . . . . . . . 222
A.5.2 Execution speed and Technical debt . . . . . . . . . . . . . 226
A.5.3 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . 229

Glossary 233

vi



www.manaraa.com

List of Figures

1.1 Area of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of the document . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Related areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Complete Methodology . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Systematic Mapping Study process overview adapted from [1] . . 22
4.3 Systematic Mapping Study - Operation . . . . . . . . . . . . . . 24
4.4 Screening of papers . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Studies selection process overview . . . . . . . . . . . . . . . . . 27
4.6 Classification schema creation adapted from [1] . . . . . . . . . . 27
4.7 Grounded theory study process overview . . . . . . . . . . . . . . 37
4.8 Design and execution process (extracted from Figure 4.7) . . . . . 38
4.9 Interview package design process . . . . . . . . . . . . . . . . . . 38
4.10 Initial company sampling . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 Interview execution process . . . . . . . . . . . . . . . . . . . . . 42
4.12 Interview package usage . . . . . . . . . . . . . . . . . . . . . . . 44
4.13 Questionnaire template - Quality achievement . . . . . . . . . . . 46
4.14 Questionnaire template - E↵ort distribution . . . . . . . . . . . . 47
4.15 Questionnaire template - Engineering lments . . . . . . . . . . . . 48
4.16 Questionnaire template - Closing questions . . . . . . . . . . . . . 49
4.17 Data collection process (extracted from Figure 4.7) . . . . . . . . 49
4.18 Data analysis process (extracted from Figure 4.7) . . . . . . . . . 50
4.19 Paradigm model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.20 Theory validation process (extracted from Figure 4.7) . . . . . . . 53

5.1 Publication distribution-year . . . . . . . . . . . . . . . . . . . . . 61
5.2 Keywords cloud overview . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Systematic map - Focus, contribution and research type . . . . . . 68
5.4 Systematic map - Contribution, pertinence and research type . . . 68
5.5 Systematic map - Pertinence, focus and research type . . . . . . . 69
5.6 Publication distribution - Venue . . . . . . . . . . . . . . . . . . . 71
5.7 Rigor-relevance overview . . . . . . . . . . . . . . . . . . . . . . . 73
5.8 Sample companies distribution . . . . . . . . . . . . . . . . . . . 82

vii



www.manaraa.com

5.9 Development e↵ort . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 High-level theoretical framework . . . . . . . . . . . . . . . . . . . 93
6.2 Detailed theoretical framework . . . . . . . . . . . . . . . . . . . . 96
6.3 Network for the core category of Coleman’s framework, adapted

from [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4 Framework validated through literature focus . . . . . . . . . . . 123
6.5 Innovation model [3] . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.6 Kano model [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.7 High-level framework core category network . . . . . . . . . . . . 131
6.8 High-level framework- technical debt network . . . . . . . . . . . 132
6.9 Measures - Linear regression . . . . . . . . . . . . . . . . . . . . . 135
6.10 Ranking engineering elements . . . . . . . . . . . . . . . . . . . . 138

7.1 Partiality and flexibility, inspired by [5] . . . . . . . . . . . . . . 142
7.2 Cynefin framework [6]. . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3 Cynefin dynamics [6]. . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4 Lifecycle model for early-stage startups . . . . . . . . . . . . . . . 149
7.5 Satir model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.6 Satir model measures . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.7 Cynefin team management [6] . . . . . . . . . . . . . . . . . . . . 154

A.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.2 Lean Startup cycle [7] . . . . . . . . . . . . . . . . . . . . . . . . 191
A.3 Optional caption for list of figures . . . . . . . . . . . . . . . . . . 200
A.4 Execution speed and Technical debt, by phase . . . . . . . . . . . 227
A.5 Distribution of potential capability . . . . . . . . . . . . . . . . . . 231
A.6 Distribution of execution speed . . . . . . . . . . . . . . . . . . . . 232
A.7 Distribution of technical debt . . . . . . . . . . . . . . . . . . . . 232

viii



www.manaraa.com

List of Tables

4.1 GQM template, five components of the research goal [8] . . . . . . 17
4.2 Mapping Study - Search String Keywords . . . . . . . . . . . . . . 24
4.3 Retrieved papers source overview . . . . . . . . . . . . . . . . . . 25
4.4 Rigor and relevance quantification . . . . . . . . . . . . . . . . . . 30
4.5 Interview package - Structure overview . . . . . . . . . . . . . . . 43
4.6 Temporal division of interviews . . . . . . . . . . . . . . . . . . . 45

5.1 Classification schema - Research type facet . . . . . . . . . . . . . 64
5.2 Classification schema - Focus facet . . . . . . . . . . . . . . . . . 64
5.3 Classification schema - Contribution Facet . . . . . . . . . . . . . 65
5.4 Classification schema - Pertinence Facet . . . . . . . . . . . . . . 65
5.5 Systematic map overview . . . . . . . . . . . . . . . . . . . . . . 67
5.6 Mapping Study - Rigor-relevance results . . . . . . . . . . . . . . 72
5.7 Mapping Study - Recurrent themes . . . . . . . . . . . . . . . . . 76
5.8 Ranking weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.9 Mapping Study - Ranking of selected studies . . . . . . . . . . . 79
5.10 Companies overview . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.11 Number of codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.12 Questionnaire results - Quality achievements . . . . . . . . . . . . 85
5.13 Qualities achievement . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.14 Questionnaire results - E↵ort by phase . . . . . . . . . . . . . . . 86
5.15 Questionnaire results - Elements fostering time-to-market . . . . 88
5.16 Questionnaire results - Development approach satisfaction . . . . 89

6.1 Final comparison - Categories and themes . . . . . . . . . . . . . 121
6.2 Mapping literature into categories . . . . . . . . . . . . . . . . . 122
6.3 Definition of boundaries for numerical values . . . . . . . . . . . 133
6.4 Quantification results of execution speed,technical debt and poten-

tial capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1 Companies and lifecycle events . . . . . . . . . . . . . . . . . . . . 148

A.1 Startup lifecycle models . . . . . . . . . . . . . . . . . . . . . . . 193
A.2 Search strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

ix



www.manaraa.com

A.3 Mapping study - One line content review . . . . . . . . . . . . . 199
A.4 Interview Package - Templates . . . . . . . . . . . . . . . . . . . . 202
A.5 Interview Package - Support Material . . . . . . . . . . . . . . . . 202
A.6 Interview Package - Topic Cards . . . . . . . . . . . . . . . . . . . 203
A.7 Interview Package - Check List . . . . . . . . . . . . . . . . . . . 203
A.8 Interview Package - Hand List . . . . . . . . . . . . . . . . . . . . 203
A.9 Interview Package - Tools . . . . . . . . . . . . . . . . . . . . . . 203
A.10 Interview Package - Follow-up . . . . . . . . . . . . . . . . . . . . 204
A.11 Interview Package - Recordings . . . . . . . . . . . . . . . . . . . 204
A.12 Interview Package - Triangulation . . . . . . . . . . . . . . . . . . 204
A.13 Grounded Theory - Interviews guiding questions . . . . . . . . . . 206
A.14 Opening questions . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.15 Product priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.16 General Process Codes . . . . . . . . . . . . . . . . . . . . . . . . 212
A.17 Requirement Engineering Codes . . . . . . . . . . . . . . . . . . . 213
A.18 Analysis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
A.19 Design/Architecture Codes . . . . . . . . . . . . . . . . . . . . . . 214
A.20 Implementation Codes . . . . . . . . . . . . . . . . . . . . . . . . 216
A.21 Verification and Validation Codes . . . . . . . . . . . . . . . . . . 217
A.22 Deployment Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 217
A.23 Closing Questions Codes . . . . . . . . . . . . . . . . . . . . . . . 218
A.24 Grounded theory - Categories and sub-categories . . . . . . . . . 219
A.25 Questionnaire results to theoretical framework . . . . . . . . . . . 221
A.26 Capability - Weights . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.27 Capability - Team . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A.28 Capability - Evolutionary . . . . . . . . . . . . . . . . . . . . . . 224
A.29 Capability - Quality . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.30 Potential capability . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.31 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.32 Rubrics for execution speed and technical debt . . . . . . . . . . 228
A.33 Execution speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.34 Technical debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.35 Quantification results of execution speed, technical debt and poten-

tial capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

x



www.manaraa.com

Chapter 1

Introduction

An impressive number of new software startups are launched worldwide every
day as a result of an increase of large new markets, accessible technologies, and
venture capital [9]. With the term software startups we refer to those temporary
organizations focused on the creation of high-tech and innovative products1, with
little or no operating history, aiming to grow by aggressively scaling their business
in highly scalable markets.

New ventures such as Facebook, Linkedin, Spotify, Pinterest, Instagram, Groupon
and Dropbox, to name a few, are good examples of startups that evolved into
successful businesses. But, despite many successful stories, the great majority of
startups fail within two years from their creation, primarily due to self-destruction
rather than competition [10]. Operating in a chaotic, rapidly evolving and uncer-
tain domain, software startups face intense time-pressure from the market and are
exposed to tough competition [11, 12]. In order to succeed in this environment,
it is crucial to choose the right features to build and be able to quickly adapt the
product to new requests constrained by very limited amount of resources [13].

As Marc Andreessen recently stressed in a widely discussed article on the Wall
Street Journal , the role of software in economy has never been as important as
it is today (to use his own words, “software is eating the world”[14]). In this
context, with the tech startup industry expanding at an impressive pace (solely
in the US “startups create an average of 3 million new jobs annually” [15]), it is
easy to understand how a small increase in their performance and success rate can
make a big di↵erence on a global scale. Startups are able to produce cutting-edge
technologies and quickly transform into large organization by initially operating
with early-adopters markets.

From a software engineering perspective startups are extremely interesting as
they develop software in a context where processes can hardly follow a prescriptive
methodology [13, 16]. Despite startups share some characteristics with similar
domains (e.g. small and web companies), the combination of di↵erent factors
makes the specific development context quite unique [17, 13]. More research is
needed to support their engineering activities [16], guiding practitioners in taking
decisions and avoiding choices that could easily lead the whole business to failure

1In this thesis we use the term “product” for both software products and software services.

1



www.manaraa.com

Chapter 1. Introduction 2

[18]. However, despite the impressive size of the startup ecosystem [19], the
state-of-the-art presents a gap. Through a Systematic Mapping Study (SMS) of
the literature only few publications were found related to engineering activities in
startups. Moreover the majority of the these studies do not possess the attributes
required to form a consistent body of knowledge in the state-of-the-art and in the
state-of-practice (see Section 5.1).

This thesis aims to understand how software development strategies are en-
gineered by practitioners in startup companies in terms of level of: structure,
planning and control of software projects, in the period of time that goes from
idea conception to the first open beta release of the software product (see Figure
1.1).

Figure 1.1: Area of interest

With a cross-sectional study we focused the research context in a limited
time-frame to highlight the nature of uncertainty in the development activities
and time pressure from the market2, as discussed in [11, 12]. We performed
semi-structured in-depth interviews with CEOs and CTOs of startups, covering a
wide spectrum of thematics and iteratively adjusting the direction of the research
according to the emerging evidences.

The systematic explorative study allowed the researchers to ground the find-
ings in the empirical data, and contribute to the field designing the initial land-
scape of research with multiple contributions:

• We present a systematic mapping of the existing academic literature, draw-
ing the landscape and evaluating the quality of the state-of-the-art. We
identified 37 relevant studies and discuss their results identifying the most
the most important contributions to research and practice (see Section 5.1).

• We discuss the surrounding context by analyzing similar areas of SE and
reviewing the existing grey literature (see Appendix A.2).

2Studies on more mature startups with advanced operating history are presented in Subsec-
tion 3 as related work.



www.manaraa.com

Chapter 1. Introduction 3

• We provide a behavioural model with validated explanatory capabilities
which illustrates the phenomenon of software development in early-stage
startups, at multiple level of abstractions (see Chapter 6).

• We analyze how the short-term priorities of software development influence
the long-term behaviour of startups, extracting an early-stage life cycle
model and comparing it to existing models (see Chapter 7).

• We compare the software development approach in early-stage startups with
traditional software development methodologies and suggest strategies to
improve the company’s performance (see Section 7.2).

• We validate our findings through systematic comparison with existing mod-
els, frameworks, empirical data, and the state-of-the-art (see Section 6.6).

• We provide to other researcher all the necessary material to reproduce our
study with additional companies and validate the study with new empirical
data.

• We discuss the limitations of the study by analyzing the most important
threats to validity (see Section 8.5) and suggest possible directions for fur-
ther research (see Section 8.6).

The remains of this document is structured in di↵erent chapters with di↵erent
concerns: first we provide relevant contextual information about startups in Back-
ground (Chapter 2), then we discuss the state-of-the-art in Related work(Chapter
3). In Research methodology (Chapter 4) we first introduce the research goal (Sub-
section 4.1.1) and research questions (Subsection 4.1.2) and then we discuss the
design and execution of the research process. The initial results are discussed in
Results and analysis (Chapter 5) which further converge in the presentation of
the Model (Chapter 6) and Dynamics and evolution of startups (Chapter 7). In
Summary (Chapter 8) we summarize the results of the thesis which are eventu-
ally wrapped up in Conclusion (Chapter 9). The Appendix A contains di↵erent
sections presenting detailed tables, figures and other information which are in-
tegrated within other chapters. Figure 1.2 provides a visual representation of
the structure of the document, explaining the main concerns addressed in each
chapter.



www.manaraa.com

Chapter 1. Introduction 4

Figure 1.2: Structure of the document

Throughout the thesis we make use of some conventions: the specific termi-
nology is summarized in the Glossary at the end of the document, while graphical
conventions are presented in Appendix A.1.



www.manaraa.com

Chapter 2

Background

Since studying entrepreneurship requires multidisciplinary competences, software
development in startups cannot be seen as a single unit. In order to apply a
proper analysis it is required to master several concepts. Among others the
more relevant are: engineering of software processes, technical debt, Agile/Lean
methodologies, web development, business models, customer development and
venture management. In this chapter we provide a basic knowledge of the concepts
listed above, grounding our research work in the surrounding context.

2.1 Overview

Modern entrepreneurship, which was born more than thirty years ago [20], has
been boosted by the advent of the consumer internet markets in the middle of the
nineties and culminated with the notorious dot-com bubble burst of 2000 [21]. Sev-
eral years later, with the massification of the internet and mobile devices, we are
now assisting to an impressive proliferation of software ventures - metaphorically
referred as the startup bubble. The easy access to vast potential markets and the
low cost of services distribution are appealing condition for modern entrepreneurs
[22]. Inspired by stories of overwhelming successes, a large number of software
businesses are created every day. However, the great majority of these companies
fail within two years from their creation [10]. Just by looking at the number of
new business incubators which appeared in the last three years one can evaluate
the importance of startups [23]. The wave of disruption in new technologies has
led companies to be more and more competitive, forcing themselves to radical
organizational and innovational renewals, which bring many companies to the at-
tempt of behaving like startups [24]. In this thesis we addressed technical aspects
related to software development in startups, exploring their operational dynam-
ics. In view of the lack of agreement on an unique definition of the word startup
(see Subsection 5.1.3), we delimited our initial contextual boundaries to newly
created innovative and single-product software companies, in the time-frame that
goes from the idea conception to the release of the first product in highly scalable
markets. Moreover, since most startups are web-oriented companies [25, 26], in
our case study, we inquired web companies with little or no operating history. Fi-

5



www.manaraa.com

Chapter 2. Background 6

nally, we didn’t consider the size of the company as a discriminant, even though
the typical founding team of early-stage startups is likely to be relatively small
[22].

2.2 Software development in startups

The implementation of methodologies to structure and control the development
activities in startups is a major challenge for engineers [27]. Generally, the man-
agement of software development is achieved through the introduction of software
processes, which defines what steps the development organizations should take
at each stage of production and provide assistance in making estimates, devel-
oping plans and measuring the quality [28]. In the last decades, several models
have been introduced to control software development activities. However, their
application in startup companies doesn’t report significant benefits [29, 27, 13].

In such context, software engineering (SE) faces complex and multifaceted ob-
stacles in understanding how to manage development processes. Sutton defines
startups as creative and flexible in nature and reluctant to introduce process or
bureaucratic measures which may hinder their natural attributes [13]. Also Bach
refers to startups as “a bunch of energetic and committed people without defined
development processes” [30]. In fact, startups have very limited resources and
typically wish to use them to support product development instead of establish-
ing processes [27, 3]. Some attempts to taylor lightweight processes to startups,
reported basic failure of their application: “Everyone is busy, and software en-
gineering practices are often one of the first places developers cut corners” [31].
Rejecting the notion of repeatable and controlled processes, startups prominently
take advantage of unpredictable, reactive and low-precision1 engineering practices
[13, 33, 34, 35].

Moreover, as a matter of fact, most startups develop packaged applications
rather than software for a specific client [36]. Issues related to this domain are
addressed in literature by the area known as market-driven software development
(sometimes called packaged software development or COTS software development
[37]). Among other results, researchers emphasize the importance of time-to-
market as a key strategic objective [38, 38, 39] for companies operating in this
domain. Other peculiar aspects which influence the software development are
related to requirements, which are reported to be often “invented by the software
company” [40], “rarely documented” [41], and can be validated only after the
product is released to market [42, 43]. Under these circumstances, failure of
product launches are largely due to “products not meeting customer needs” [37].

Accordingly, product-oriented practices help startups in having a flexible team,
with workflows that leave them the ability to quickly change the direction accord-
ing to the targeted market [3, 13]. At this regard, many startups focus on team

1The term “low-precision” has been derived from [32].



www.manaraa.com

Chapter 2. Background 7

productivity, asserting more control to the employees instead of providing them
rigid guidelines [33, 34, 35]. Despite some studies tried to address the above
mentioned issues, from the systematic review of the literature we found only a
few SE works in this specific area, as confirmed by other studies [27, 29, 2, 13].
Moreover the studies, identified in our systematic review, appear to be highly
fragmented and spread across di↵erent areas rather than constituting a consis-
tent body of knowledge (see Secion 5.1). Notwithstanding, a new interesting area
of the SE research, trying to tackle the problem of the technical debt, seems to
bring interesting implications in studying development in software startups. The
metaphoric neologism was originally introduced by Cunningham in 1992 [44] and
has recently attracted the attention of SE researchers2. The concept of technical
debt is well illustrated in [48]: “The idea is that developers sometimes accept com-
promises a system in one dimension (e.g., modularity) to meet an urgent demand
in some other dimension (e.g., a deadline), and that such compromises incur a
“debt” on which “interest” has to be paid and which the “principal” should be
repaid at some point for the long-term health of the project”. The compromise
between high-speed and high-quality engineering is faced daily by software star-
tups, not only in terms of architecture design but in multifaceted aspects (weak
project management, testing, process control, . . . ).

2.3 Related areas

To fully understand the context in which startups operate, is useful to refer to
related areas which can o↵er relevant contributions. Among others, we identified
four boundary domains which are particularly interesting for this research, as
depicted in Figure 2.1.

Figure 2.1: Related areas

2To attest the fact that technical debt is gaining traction among researchers, we mention
two important contributions which characterize the “debt landscape”: [45, 46] and a dedicated
workshop [47] organized by the Software Engineering Institute and ICSE.



www.manaraa.com

Chapter 2. Background 8

First of all, in terms of the number of employees, early stage startups are
typically small software companies. Then, it is relevant to understand what
research has been provided by engineering in the small area. Moreover, since
we focus the case study on web startups, another related area is represented by
web engineering, which presents some peculiar characteristics that di↵er from
traditional approaches. Some other important lessons can be derived by looking
at aspects related to venture management and financing, which typically are the
drivers of startup’s decisions. Finally, throughout the thesis document we will
refer to the Lean startup methodology [7] which provide good explanatory tools to
researchers. In the next sections we review the most important contribution each
field can provide to support SE in startup companies. A more detailed discussion
is presented in appendix A.2.

2.3.1 Engineering in small companies

A special issue of IEEE Software of 2007 collects a good number of articles en-
tirely dedicated to the topic of SE in the small [49] where researchers try to delve
into a very interesting research problem, i.e. “How can small organizations apply
software engineering methods, techniques, best practices and tools to improve soft-
ware quality and productivity without introducing unacceptable overhead?”. Re-
searchers advocate for e↵ective SE solutions for small software companies which
“aren’t just scaled-down version of large firms” [20] but are usually more flat,
extremely flexible, responsive, adopting a free-flowing management style.

The majority of today’s software companies are small [49] and present lack of
processes and basic documentation [50], despite they are recognized as important
aspects of software development [31]. Especially software process improvement
(SPI) in small software development organizations is almost neglected, due of
the amount of time required to establish all the configuration management and
review processes. The emphasis on flexibility and short development schedules,
especially in the early-stage of a software company [51], lead small companies to
consider SPI models as an obstacle, since the latter aim to achieve repeatability
and predictability. SPI requires considerable e↵ort and its value can be recognized
only in the long run, when the workflow realistically start to be sustainable for
further growth [52] (see Appendix A.2.2 for more details about engineering in
small companies).

2.3.2 Web engineering

The great majority of well-funded today’s startups are working on web applica-
tions [25, 22, 26]. This is consistent with the sample of companies we considered
in this research and therefore in this section we briefly discuss the peculiar charac-
teristics of software engineering for a web product, as reported by the literature.



www.manaraa.com

Chapter 2. Background 9

Web engineering is the discipline which makes “[. . . ] use of scientific, engi-
neering, management principles and systematic approaches with the aim of suc-
cessfully developing, deploying and maintaining high quality Web-based systems
and applications” [53]. Web development is mainly characterized by small team
size, short timelines and agile/rapid development approaches [54]. Another im-
portant characteristic of web projects is the constant tradeo↵ between “feature
slip”3, “time-to-market” and “software quality” [55]. Nevertheless, loosely cou-
pled web-based systems in the long run become larger and more complex, im-
pacting negatively on product quality aspects. Since most of web-based system
development must be completed in the short term, as described in [56], web en-
gineering generally lacks integrated and formal testing methodologies. Moreover
estimating process and product metrics, such as robustness and maintainability,
can be challenging since formal requirements, analysis and design are almost ne-
glected [57]. Finally, an interesting recent study, executed a grounded theory
research using an approach similar to the one undertaken by our research, to un-
derstand SPI initiatives in small web companies providing a detailed conceptual
model [58] (see Appendix A.2.3 for more details about web engineering).

2.3.3 Lean startup methodology

One of the modern pioneer of software startups’ research is Steven Blank, who
has confirmed the profound diversity between startups and smaller versions of
large companies from a entrepreneurial and managerial perspectives. Being him-
self a practitioner and an academic, he developed the Customer Development
process, extensively described in The Four Steps to the Epiphany (2005) [17] and
The Startup Owner’s Manual (2012) [59]. In the course of attracting and keep-
ing customers, Blank suggests a process that has to be place aside of product
development, which aims to discover and validate the right market for an idea,
building the product features that solve actual customers’ needs, testing the cor-
rect model and tactics for acquiring and converting customers, and deploying the
right organization and resources to scale the business.

“The best student” that Blank ever had was Eric Ries, now successful en-
trepreneur and engineer, who is recognized for pioneering the Lean Startup Move-
ment, which combines the Japanese concept of Lean production with Blank’s
Customer development, to establish a new sort of discipline. In his bestseller
book The Lean Startup [7], Ries presents how entrepreneurs in every settings
make the same mistakes: they build elaborated products before daring to test
them with final users4, basing their decisions on wrong information. He intro-
duced the concept of “minimal viable product” (MVP), which is a strategy used
for fast and quantitative market testing of a product that has just those essential

3Feature slip is defined as the action of postpone a low-priority feature to a later release.
4We use the term “users” to include “customers” throughout the rest of the thesis. See [60]

for a discussion on the term “user”.



www.manaraa.com

Chapter 2. Background 10

features which allow the product to be released. From a technical perspective he
developed the Lean Startup model, which core is the Build-Measure-Learn feed-
back loop. Through this model, he explains how it is important to test early the
riskiest elements of a startup’s plan, the parts on which everything else depends
on (see Appendix A.2.5 for more details about the lean startup methodology).

Although the Lean startup methodology is presented as an innovative tool,
from a SE point of view, many concepts discussed in the book can be dated back
in time to almost 40 years ago. For instance Basili in 1975 wrote about what
was called Iterative Enhancement technique, a practical approach to software
development which recalls the MVP: “This technique (Iterative Enhancement)
begins with a simple initial implementation of a properly chosen skeletal subpro-
ject which is followed by the gradual enhancement of successive implementations”
[61]. Another important study of Carmel, back in 1995, invited companies to
“[. . . ] develop incrementally to improve product design and reduce risks. Eval-
uate and minimize risk. Evaluate alternatives at each incremental juncture and
minimize commitment of capital, time, and labor at each stage of the process.
Once the risks are evaluated, employ risk reduction techniques such as: prototyp-
ing, mock-ups, proof-of-concepts, simulations, usability labs, and benchmarking”
[62]. However, the Lean startup methodology is gaining high consensus into the
startup community, and therefore worth exploring (see Appendix A.2.4 for more
details).

2.3.4 Venture management and financing

The increasing economic importance of startups brought a significant manage-
ment interests to the entrepreneurship. Scientific management, developed in the
early 1910’s [63], has dramatically contributed in making companies more e�cient
and e↵ective. However, despite the huge knowledge emerged during these years
of research, only a little part of findings has been able to adapt to the context
of startups. The reason behind is the chaotic context of the startup’s domain,
and consequently the di�culties of creating the structures necessary to synthe-
size a common language and framework to describe and measure innovation and
entrepreneurship [64].

Many researchers strived in defining main characteristics in this domain and
have principally focused on the commercial risks of a startup. A typically reported
challenge is the fact that startups run from project to project cash-flows. With
very little capital it is hard to gain long term technological knowledge and com-
petences [65]. On the other hand, excessive capital from day 1 might be harmful.
As reported in [22] chances of success are statistically correlated to the ability of
coherently scaling in activities related to the dimensions of: customer, product,
team-size, finance and business model. Also remarked in [66], the strength of
mutual cooperation between the entrepreneur and the capitalist is a main factor
of success, assuming coordination between product, market and financing [67].



www.manaraa.com

Chapter 2. Background 11

As reported in [68], startups usually rely on third party funding to support
their operations. At the very beginning startups have a relatively small initial
capital (seed funding) which amount is highly dependent on the kind of product
and location. The seed capital can come from founders’ personal resources (boot-
strapping) or from some early Angel Investors. In this initial phase most startups
are basically burning capital without having any revenue stream. If the product
and market is promising, the following financial venture rounds are increasingly
more consistent and usually involves Venture Capital (VC) funds. After large
rounds of funding, startups try to attack larger and fast-growing markets with
the goal of scaling the company [69], being acquired5 or going public with an
IPO6.

5Sometimes startups are acquired by large organizations for strategical reasons related to
the talent of the team (acqui-hire) rather than for the profitability of the company.

6It stands for Initial Public O↵ering, that is a type of public o↵ering where shares of stock
in a company are sold to the general public.



www.manaraa.com

Chapter 3

Related work

In this chapter we present the most relevant studies contributing to the formation
of a body of knowledge focused on engineering activities in software startups. The
materials reviewed here were mostly collected during the execution of a systematic
review of the literature (detailed in Section 4.2).

The word startup appeared in the SE literature for the first time in 1994 in an
article written by Carmel [70] where he studied the time-to-completion in young
package firm1. He noticed how these companies were particularly innovative
and successful, advocating for the need of more research investigating software
development practices so as to replicate success and try to transfer it to other
technology sectors.

Only a few engineering studies in this specific area have been published in
the years that followed (see Chapter 5). Moreover the studies we identified in
the systematic review appear to be highly fragmented and spread across di↵erent
areas rather than constituting a consistent body of knowledge. In fact, we were
able to identify only four empirical SE studies published prior to 2012 which are
entirely dedicated to the topic of software development approaches in startups,
designed executed and presented in a rigorous way2. In the remaining part of
this section we provide an overview of the related works that we have identified
during our research.

First of all, a research published in 2000 by Sutton [13] confirmed a general lack
of studies in this area, claiming that “software startups represent a segment that
has been mostly neglected in process studies” and it has been further confirmed
with the empirical studies of Coleman et al. [27, 29, 2] eight years later.

One of the most prolific SE researcher in the area of startups is Gerry Coleman.
He started working with irish startup companies and developing a “lightweight
software process for startups based on agile practices” [71], which has been pre-
sented at a conference in 2004 [72] but apparently the research evolved into a

1The software development challenges of a startup have changed dramatically in the last 20
years.

2Moreover the studies under consideration [27, 29, 2, 18] have investigated mainly mature
startups, whilst the empirical research we performed is focused on early-stages startups. This
issue is further discussed in the analysis of the systematic literature review (see Section 5.1)

12



www.manaraa.com

Chapter 3. Related work 13

di↵erent direction3. Indeed, his attention moved from startups to small enter-
prises [16]. In fact, he published an article titled “Using grounded theory to
understand software process improvement” [2], which includes detailed explana-
tion of the research methodology undertaken for his analysis. His results show
di↵erent factors that influence and hinder the formation of processes in startups
and small companies.

First insights reveal how software startups are product-oriented in the first
period of their development phase [3]. Despite good achievements at the begin-
ning, software development and organizational management increase in complex-
ity [73, 74] causing deterioration of performance over time. Briefly, the necessity
of establishing initial repeatable and scalable processes cannot be postponed for-
ever4.

A study of Kajko-Mattsson [18], which investigated a Swedish software startup,
reported a heavy lack of requirements gathering process, minimal project man-
agement, lack of control over the change requests, absence of documentation to
track the status and progress of the process and defective releases. Accordingly,
Ambler et al. report how two startups approaching to an upcoming IPO started
to require processes to focus on scalable solutions, in view of the growing com-
pany’s size in terms of users and employees [76]. In this regard, Crowne, in [10],
specifies di↵erent stages through which software startups evolve. Starting with-
out any established workflows, startups grow over time, creating and stabilizing
processes to eventually improving them only when su�ciently mature.

As studied in [77], the maturity of a company a↵ects the extent to which pro-
cesses are adopted. The author reports how introducing Extreme Programming
(XP) principles [78] in the development process was challenging because of the
need of trained team-members for fully implementing the methodology5. In fact,
[79] was able to start with all the XP practices in place only after six months
of coaching the team, trying to enhance maturity from day-one. Nevertheless,
even then, customization of practices were inevitably implemented to adapt the
processes to the undertaken startups’ context [80].

But when startups have no time for training and orienting activities, as dis-
cussed in [13], their main focus remains on team capabilities instead of prescriptive
processes hiring people who can “hit the ground running” [81]. Empowering the
team and focus on methodological attributes of the processes oriented in proto-
typing, proof-of-concepts, mock-ups and demos, to test basic functionalities, have
been the primary priority in startups as described in [70]. Only when they grow,

3Coleman has been personally contacted and he confirmed that the lightweight process in
question has not been further adopted neither “developed into the later research”

4This has been confirmed by Peter Thiel, co-founder of Paypal, Asana and other successful
businesses, who declared that “there is no real chance of setting things up correctly such that
the rest unfold easily. But you should still get the early stu↵ as right as possible”[75].

5According to XP creator Kent Beck, to be e↵ective XP requires to be carefully applied: “if
you follow 80 percent of the process, you get just 20 percent of the benefits” [78].



www.manaraa.com

Chapter 3. Related work 14

formal methodologies arise, followed by a conduction of quality assurance and
long-term planning processes [81].

As partially discussed above, contributions to flexibility and reactiveness of
the development process has been conducted prominently by means of Lean [82]
and Agile [83] methodologies (also reported in [84, 85]), where the extreme un-
certain conditions lead startups to learn fast from trials and errors with a strong
customer relationship in order to avoid wasting time in building wrong func-
tionalities and prevent rapidly exhaustion of resources [86, 68, 13]. Customer
involvement in software development has also been discussed in [87] as important
factor to encourage an early alignment of business concerns to the technology
strategies, because both are salient considerations to be successful [77].

When startups take a development approach that is mainly product-oriented
rather than process-oriented, it is essential to have a flexible team, with a workflow
that helps them quickly to change direction according to the target market [13].
In this regard, many startups have been focused on team productivity, providing
more control to the employees instead of providing them rigid guidelines [33, 34,
35].

Then, when startups are mature enough to support software process improve-
ment (SPI), the solutions considered according to the state-of-the-art are oriented
towards light-weight processes such as a design of development process based on
XP, proposed by Zettel in [88]. The process consists of a set of activities and
artifacts (in addition to some important roles) defined in order to identify re-
sponsibilities and tools to utilize. But, despite the promising benefits reported by
Zettel, we were not able to identify any future evaluation in real-world settings.

Another attempt of SPI in startups has been conducted by Deakins et al.
introducing a Helical Model for managing e-commerce development environment
[89]. Also in this case, the author prescribed broad guidelines for a rapid high-
quality development process, which underwent limited testing only in academic
settings.

The first publication mentioning the problem of one-size-fits-all, related to
the SPI representations for startups, is described in [90]. The author reveals
the problem in actuating the same best-practices criteria for established compa-
nies in 10-person software startups. Thoroughly remarked in [13], Sutton states
that problems of SPI in software startups arise because of: the dynamism of
the development process, which precludes repeatability; organizational maturity,
that cannot be maintained from startups in view of lack of corporate direction;
severe lack of resources, both human and technological for process definition, im-
plementation, management, training . . . ; in conclusion, the primary benefits of
SPI do not address startups, which instead of promoting product quality, aim to
minimize time-to-market.

Additionally, the role of SPI has always been neglected because seen as an
obstacle to the development team’s creativity and flexibility as described in [29]
and to the need of a quick delivering product process environment. In fact,



www.manaraa.com

Chapter 3. Related work 15

product quality is left aside in favour of minimal and suitable functionalities
to shorten the time-to-market. As reported in two studies of Mater and Mirel
[91, 92], quality aspects, mostly taken in consideration in internet startups, are
oriented to usability and scalability, even though the market and application type
heavily influences the quality-demand [27, 93].

Finally, to maintain the development activities, oriented to limited but suit-
able functionality, many studies suggest to externalize the complexity of parts of
the project to third party solutions by means of outsourcing activities, software
reuse and open-source strategies [94, 95, 96, 97].

In conclusion, since “all decisions related to product development are trade-o↵
situations” [68], generally startups optimize workflows to the dynamic context
they are involved into. In fact they typically adopt any development style that
might work to support their first needs in what is called the “Just do it” school
of software startups [7]. Additionally, as remarked by Coleman, “many managers
just decide to apply what they know, as their experience tells them it is merely
common sense” [27].

To summarize - although a number of studies have been discussed in this
section - the existing material appears to be inadequate to deal with the increasing
importance of startups’ demands. In fact, as confirmed by the analysis of results
of the systematic review (see Section 5.1.4) this area appears to be, to some extent,
immature. Nonetheless, we are recently assisting an impressive proliferation of
books (such as [59, 7, 24, 98]) and pseudo researches [99], which are gaining
traction among practitioners. For this reason we have dedicated a subsection
of Appendix A.2.5 to review the most relevant part of the grey literature which
a↵ects our research.



www.manaraa.com

Chapter 4

Research methodology

4.1 Introduction

This chapter looks into the undertaken research methodology process, as well
as the rationale behind its selection. The first part provides a general overview
followed by dedicated sections detailing the execution of the research.

To support the definition of the research goals (RGs), we make use of context-
specific terminologies, which will be used throughout the whole document and
are specified in the glossary:

• Software development strategy: the overall approach adopted by the com-
pany to carry out the product development.

• Engineering activities: the activities needed to bring a product from idea
to market1.

• Engineering elements: any method/practice/tool/framework/technique/-
documentation/artifact contributing and supporting the engineering activ-
ities.

• Quality attributes: those overall factors that a↵ect run-time behavior, sys-
tem design, and user experience. They represent areas of concern that have
the potential for applications to impact across layers and tiers. Some of
these attributes are related to the overall system design, while others are
specific to run time, design time or user centric issues2.

• Operational dynamics: the approaches of the company in making decisions.
• Growth: an increase in the company size respect to the initial conditions
in terms of either employees or users/customers, and product complexity in
terms of handling an increasing number of feature requests.

1Instances of traditional engineering activities are, among others, requirement engineering,
design, architecture, implementation and testing.

2Definition adapted from [100].

16



www.manaraa.com

Chapter 4. Research methodology 17

4.1.1 Research goal definition

The aim of this research is to understand how software development strategies are
engineered by practitioners in startup companies in terms of level of: structure,
planning and control of software projects, in the period of time that goes from idea
conception to the first open beta release of the software product.

The above mentioned goal is structured according to the GQM paradigm [101],
as shown in Table 4.1.

Object of study Software development strategy
Focus Level of structures, planning and control of software projects
Purpose Understand
Perspective Technical practitioners
Context Newly founded software startup, from idea conception to first release

Table 4.1: GQM template, five components of the research goal [8]

In order to achieve the research goal a set of subgoals has been defined:

1. Explore the SE literature to understand what has been achieved so far by
researchers in studying software startups and contributing to the creation
of a scientific body of knowledge.

2. Understand how and why startup practitioners use engineering elements in
the creation of a new product.

3. Investigate the perception of a perfect hindsight early-stage development
strategy among practitioners, which can foster the productivity in subse-
quent lifecycle stages.

4.1.2 Research questions

Initially the boundaries of the research domain were set by means of non-systematic
literature surveys, which provided the initial keywords used further in the research
process. Moreover it helped us in defining the research questions (RQs) addressed
by this thesis:

• RQ-1: What is the state-of-the-art in the SE literature pertaining to engi-
neering activities in startups?

– RQ-1.1: How is the body of knowledge distributed in literature?
– RQ-1.2: What is the industrial relevance and scientific rigor of the

published studies?
– RQ-1.3: What are the features which characterize the context of soft-

ware development in startups, reported in literature?
• RQ-2: What is the current state-of-practice related to software development
strategies in early-stage startups?



www.manaraa.com

Chapter 4. Research methodology 18

– RQ-2.1: How do startups structure and execute the main engineering
activities?

– RQ-2.2: How are product quality attributes considered by startups?
• RQ-3: What development strategies can be adopted by startups with the
aim of facilitating future growth?

– RQ-3.1: What are the operational dynamics that influence the adher-
ence to adopted development strategies?

– RQ-3.2: What are the main objectives of software development after
the first product is released?

– RQ-3.3: What development strategies help in reaching long-term ob-
jectives?

The above mentioned research questions are used as guidelines to outline the
results and the analysis throughout the thesis document, referring to them with
their unique identifier. RQ-1 is addressed in the analysis of mapping study results
(Section 5.1), RQ-2 in the chapter dedicated to the theoretical model (Section
6.5) and RQ-3 in the chapter dedicated to dynamics and evolutions of startups
(Chapter 7). Finally the findings are summarized in Conclusions (Chapter 9).

4.1.3 Research methodology overview

In this subsection we present a general overview of the research methodologies
undertaken in this thesis for tackling the above-defined RQs. After the iden-
tification and refinement of the research problem with non-systematic literature
survey3, we combined di↵erent research methodologies in a grounded theory (GT)
approach [103] to obtain a model of software development in early-stage startups.
The research methodology chapter has been divided in two sections, respectively
concerned with:

1. The review of the state-of-the-art through a Systematic Mapping Study
(SMS) (see Section 4.2).

2. The case study (see Section 4.3) conducted in 13 early-stage startups through
field interviews combined with follow-up questionnaires.

Figure 4.1 provides an overview of the overall research process, emphasizing
the cross-methodological approach conducted exploring the state-of-the-art and
the state-of-practice.

3The surveys have been executed and refined multiple times on the Compendex database
which is the single database indexing the great majority of articles [102].



www.manaraa.com

Chapter 4. Research methodology 19

Figure 4.1: Complete Methodology

From the initial definition of the research problem - obtained with litera-
ture surveys - we moved to the grounded theory (GT). GT has been conducted
through: the systematic mapping study obtaining the extant literature; field in-
terviews to generate a theoretical framework ; and follow-up questionnaires to
triangulate the data in support of the framework validation. The main output4

of this methodological approach [104] is the theoretical framework that explains
relevant aspects of the underlying phenomenon of software development in early-
stage startups (see Chapter 6). As suggested by Glaser [105] and following the
example of a similar research carried out by Coleman in 2005 [16], we performed
the framework validation by systematically comparing our results with the extant
literature and the empirical data (see Section 6.6). Finally with framework mod-
elling, we conducted an in-depth comparative analysis with existing evolutionary
and decision-making models, to understand the operational dynamics adopted
during the development process (see Chapter 7).

The answer to RQ-1 (state-of-the-art) is discussed in the results and analysis
of the SMS (see Subection 5.1.4), RQ-2 (state-of-practice) is discussed in the
Implications of the theoretical framework (see Section 6.5) and RQ-3 is answered
in Chapter 7. The findings are summarized in Chapter 8.

4.1.4 Rationale for methodology selection

Before deciding on which research methodology best would have fitted to the
research problems, we had to iterate and change them a number of times in
order to come up with a reasonable solution. The main challenge was to find
a methodology that would allow us to obtain good and significant results in an

4The full list of contribution has been presented in Introduction.



www.manaraa.com

Chapter 4. Research methodology 20

arena that is mostly unexplored within the time/e↵ort frame of a master thesis.
Under the guidance of our supervisors, we had to get through a di�cult trade-o↵
between trying to deepen the understanding of a specific problem or covering a
wide spectrum of topics.

Going extensively into a specific problem in software startups context would
not have been worth trying because we didn’t find a su�cient number of studies
that constituted a solid body of knowledge to support the definition of a narrowed
research focus. On the other hand, trying to select a broad research topic would
have carried the risk of spending a lot of time in achieving a better understanding
of the problem without being able to provide any significant or concrete results.

We iterated di↵erent approaches before starting the actual research. This led
us to explore several possibilities, and gave us the time to perform several litera-
ture surveys about both research methodologies and software startups: we started
to re-formulate the research problem and research methodology. To complete this
process we designed an online survey about engineering practices with the idea
of distributing it on a large scale to gather quantitative data. However, when
we obtained the first results we immediately realized that what we needed was
a more flexible design approach, fine-tuned to the research problem, that allows
to gather concrete qualitative results and at the same time can retrieve relevant
works from related areas of the SE literature5.

As we wanted to have the ability to transfer our ideas to startup practitioners,
we designed a comparative study of the state-of-the-art and the state-of-practice
following evidence-based software engineering principles [106, 107] and providing
empirical evidences supporting startups’ decisions.

For the review of the existing literature we chose the SMS, which is one of the
most appropriate methodologies capable in dealing with wide and poorly-defined
areas [1, 108]. A more traditional Systematic Literature Review (SLR) [108] would
have been a less viable option due to the wide breadth of the research problem
and an apparent lack of a strong academic support material (di↵erences between
SLR and SMS are thoroughly discussed by Petersen et al. in [1]). Moreover a
SMS can be optimally coupled together with an evolutionary grounded theory
approach, driving the direction of the case study towards most interesting and
uncharted areas.

Thus, the rationale which led us to the choice of grounded theory for the case
study, can be synthesized with the following statements:

• Given the lack of an integrated theory in the literature, a GT approach
allowed a theory to naturally emerge based on experiences gained from
technical practitioners.

5The inadequacy of surveys in this context has emerged in the empirical study and it is
discussed in the comparative analysis (see Section A.2). This argument is partially supported
by [18].



www.manaraa.com

Chapter 4. Research methodology 21

• GT is supported with good guidelines that are well documented for con-
ducting theory-generating research [2, 58].

• GT is well known to fit with research problems related to human behavior6.

We fine-tuned the general guidelines and suggestions of grounded theorists to
our specific case, where a lack of existing theories points towards the use of an
inductive approach to enhance the comprehension of complex phenomenon. In or-
der to clarify doubts and collect quantitative data that we couldn’t capture during
interviews, we designed a customized online questionnaire for each company that
participated to the interview sessions. Finally, to support the transparence of the
research process, we documented the whole procedure in a diary-like application
constantly updating new ideas and findings as they emerged from interviews and
literature, letting our supervisors adjust the study trajectory.

In the process of selecting the methodology, several alternatives have been
considered, analyzing their impact on the outcome. The explorative nature of
the initial research problem made the possibility of using a purely quantitative
approach not suitable for understanding this socio-technical phenomenon. On the
other hand, the broad research problem forced us in selecting a methodology fea-
turing a flexible design approach and to discard those methodologies that require
a fixed design: we needed to adjust the direction of the research as we progress
through, avoiding any early choices that would have limited such flexibility.

A valid alternative approach that could have been undertaken is an obser-
vational study. In fact, being a passive observer, into the first phases of the
creation of a software product in startup companies, would have been a viable
option. However, to achieve the same results we obtained through GT, an obser-
vational study would have required observations of a number of di↵erent startups
for a long-enough timeframe in the creation of their first product and this would
have been unreasonably expensive in terms of e↵ort and time for the startups’
practitioners.

Additionally, among other traditional qualitative methods, some of them re-
quire less e↵ort than a GT approach, but they are not as systematic and rigorous
as GT. Then, in view of a lack of studies exploring the topic, to create a solid
scientific base for further investigation, the best possible choice is to select the
most reliable and documented research methodology [103].

In the following sections of this chapter we detail the research methodology
and execution of the systematic mapping of the literature (4.2) and the grounded
theory case study (4.3).

6Software development is to a great extent characterized by human-intensive activities.



www.manaraa.com

Chapter 4. Research methodology 22

4.2 Systematic mapping study

A first preliminary literature survey in the SE databases revealed a quite wide gap
in works addressing our research problem but at the same time it showed us how
broad the domain was. In fact, understanding the general approach undertaken
by software startups to develop software requires us to explore di↵erent research
areas.

One of the most appropriate methodologies, which helps researchers to investi-
gate wide and poorly defined fields, is the Systematic Mapping Study (SMS), also
known as Scoping Study [108]. Despite SMS has its roots in medical research, the
growing body of knowledge of SE and the tendency towards evidence-based ap-
proaches [109] made SMS a technique increasingly adopted by software engineers
[110]. SMS provides systematic guidelines to classify existing works obtaining an
overview of the area, which can be easily transferred to other researchers and
startups’ practitioners.

A definition which confirms the suitability of this methodology is provided
by Kitchenham et al. in [108]: “SMSs are designed to provide a wide overview
of a research area, to establish if research evidence exists on a topic and provide
an indication of the quantity of the evidence [. . . ]” - and the authors continue -
“[. . . ] with the aim of influencing the future direction of primary research.”

4.2.1 SMS - Process Overview

For executing the Systematic Mapping Study we scanned studies throughout the
scientific databases following the process suggested by Petersen et al. in [1] as
shown in Figure 4.2, where the upper blocks represent an action and the under-
lying block represents its output.

Figure 4.2: Systematic Mapping Study process overview adapted from [1]



www.manaraa.com

Chapter 4. Research methodology 23

Starting from the research problem defined in 4.1.1, the first step of our sys-
tematic study was Operation. The whole SMS procedure has been executed si-
multaneously in pair on the same screen, handling conflicts at the end of the data
extraction and mapping process by reviewing the rationale of similar decisions
taken during the screening of papers. When necessary we performed an in-depth
review of the article7.

4.2.2 SMS - Operation

The first step for conducting a systematic search was iteratively building a search
string composed by di↵erent keywords that emerge by reviewing the scope of
the research questions. To reflect our wide research problem we needed a very
broad search string, which was generated from three core concepts identified as
fundamental to our problem domain, i.e.:

• Software startup.
• Development.
• Process.

Following Rumsey’s guidelines [111], for each core concept we identified syn-
onymous, related concepts, broader concepts, wider concepts, alternative spelling
and part of speech that contributed to elaborate the list of terms included in our
search string.

The second step was the identification of relevant and significant databases
to include in our search process. To increase the internal validity of our research
and the chances of finding relevant material we included in our target 5 of the
most important peer-reviewed scientific online databases, namely:

• ACM Digital Library [112].
• Compendix/Inspec [102].
• IEEE Xplore [113].
• ISI Web of Science [114].
• Scopus [115].

To be more confident of the results, we included in the set of databases Google
Scholar [116], which indexes an extremely large set of data, both peer and non-
peer reviewed. All the mentioned databases were selected in view of their ability
to handle advanced queries.

We then proceeded in customizing the search string and iteratively perform
the search while refining search keywords. The overall process we used is shown
in Figure 4.3.

7If the conflicts persisted after an in-depth review of the article, we let a third expert person
(i.e. our supervisors) take the final decision.



www.manaraa.com

Chapter 4. Research methodology 24

Figure 4.3: Systematic Mapping Study - Operation

The procedure established in the figure above produces six di↵erent outputs
- one per database - which are further analyzed as shown in Figure 4.4.

The terms which formed our final search string are shown in Table 4.2, next
to the core concept they represent8.

Core Concept Terms

Software Startups software startup*; software start-up*; early-stage firm*; early-stage compan*;
high-tech venture*; high-tech start-up*; start-up compan*; startup compan*;
lean startup*; lean start-up*; software package start-up*; software package
startup*; IT start-up*; IT startup*; software product startup*; software start
up*; internet start-up*; internet startup*; web startup*; web start-up*; mobile
startup*; mobile start-up*;

Development develop*; engineer*; model*; construct*; implement*; cod*; creat*; build*;

Strategy product*; service*; process*; methodolog*; tool*; method*; practice*; artifact*;
artefact*; qualit*; ilit*; strateg*; software;

Table 4.2: Mapping Study - Search String Keywords

In forming our search string, detailed in Appendix A.3 (Table A.2), terms
belonging to di↵erent core concepts were linked with the logical and, while terms
on the same row have been linked with the logical or.

8The symbol * indicates the use a wildcard, mainly for including plural forms and alternative
spellings.



www.manaraa.com

Chapter 4. Research methodology 25

After executing the search strings on each database we saved the bibliographic
references in 6 separated BibTeX files, containing a total number of 1417 items,
coming from di↵erent databases as shown in Table 4.3.

List Database Items

List A Inspec/Compendex 508
List B IEEE Xplore 104
List C Scopus 357
List D ISI Web of Knowledge 219
List E ACM Digital Library 71
List F Google Scholar 158

Total: 1417

Table 4.3: Retrieved papers source overview

4.2.3 SMS - Screening of papers

To execute the screening of papers we defined and followed a rigid step-by-step
workflow, shown in Figure 4.4.

Figure 4.4: Screening of papers

With the support of a tool for bibliographic management [117] we merged the
six lists together and removed the duplicate items in two distinct steps: first we
used an automated feature to detect and remove items based on the author, year
and title of the publication. Then, we manually deleted other duplicates that
were not detected by the tool, for a total number of 474 duplicates.

Before proceeding with further exclusions we defined our inclusion/exclusion
criteria, aiming to include only peer-reviewed papers which brought some contri-



www.manaraa.com

Chapter 4. Research methodology 26

bution to the body of knowledge of software engineering, by explicitly mentioning
results related to software development in startups. Additionally we decided to
reject articles with the following characteristics:

• Non-peer reviewed (grey literature, books, . . . ).
• Not written in English.
• Clearly obsolete results (more than 20 years old).
• Related to non-software companies (biotech, manufacturing, electronics,
. . . ).

• Related only to established companies (VSE, SME, research spin-o↵s).
• Related only to technicalities of startups (algorithms, programming lan-
guages, . . . ).

We started analyzing the metadata of each article in pair (title, venue, key-
words and the publication year) to exclude items that clearly didn’t satisfied
the inclusion criteria (221), leaving important decision for the subsequent steps.
Then, going through a more in-depth review, we analyzed abstracts of each pa-
per to determine whether the article satisfied our inclusion criteria, eliminating
658 items. In case of internal conflicts, hard decisions, or incomplete abstracts
we read through an entire article, excluding 27 additional items. As shown in
Figure 4.4, while screening abstracts we improved the search process by enriching
the initial search strings with new keywords identified in retrieved articles and
iteratively conducting a new search (Figure 4.3).

During the screening of papers, we have found that some articles, not included,
had the potential of contributing to our analysis. For this reasons we created an
additional list (Rejected-but-interesting List) that we filled during the exclusion
process with 71 managerial articles filtered and analyzed in a dedicated section
in Appendix A.2.1.

During this review process we kept track of the rationale for each exclusion,
visually presented in the right column of the Figure 4.5.



www.manaraa.com

Chapter 4. Research methodology 27

Figure 4.5: Studies selection process overview

The majority of paper we excluded were not related to the software indus-
try (391), not interesting under a SE perspective (226) or related to established
companies (69). Other excluded work were o↵-topic (99), educational (60), non
peer-reviewed (40), non-English(4) or outdated (4).

4.2.4 SMS - Keywording

To generate the classification schema we used the technique of keywording, fol-
lowing the systematic process illustrated in Figure 4.6.

Figure 4.6: Classification schema creation adapted from [1]

The first step consisted in reading abstracts of the relevant studies, assigning
them a set of keywords, to spot the main contribution area of a paper. To
get a rough understanding of the research area represented by the sample of



www.manaraa.com

Chapter 4. Research methodology 28

collected papers, we combined together the defined keywords forming a high-level
set of categories, which initially generated a first representation of the selected
articles. Then, by progressively trying to fit the articles into categories, the
schema underwent a refinement process by being updated to receive new data.

4.2.5 SMS - Data extraction and mapping

After we defined the classification schema (presented in Subsection 5.1.1)we pro-
ceeded to systematically extract data from the selected relevant studies. We
filled a spreadsheet where, for each article, we assigned a specific category of the
schema, and additionally we collected other information inspired by other similar
studies [118, 119]:

• Article title.
• First author.
• Year of publication.
• Synthesis of results (one-line).
• Keywords.

When executing the actual extraction, we motivated with comments the non-
obvious decisions we took in a spreadsheet, writing the rationale behind the be-
longing of an article to a certain category rather than another. The output of this
process is shown in Results and Analysis (see Subsection 5.1.1) and represents the
final systematic map. We took advantage of the data extraction process to identify
an additional relevant aspect which emerged while reading abstracts and docu-
ments: the recurrent patterns of common attributes among startup companies
(resulting themes are reported in Subsection 5.1.3). Moreover, the bibliography
of each extracted article has been screened to identify other possible relevant ar-
ticles to our research, adopting the snowballing technique9 [120]. Collecting this
information early in the research process helped us to build a conceptual baseline
that we utilized to assist the selection criteria for initial convenience sampling of
companies in the case study. Additionally, we used themes in combination with
grounded theory results for the creation of the the theoretical model (see Chapter
6).

4.2.6 SMS - Rigor-relevance assessment

The primary challenge of SE is to transfer research results and knowledge to
practitioners showing valid and concrete advantages [121]. To assess how results

9Note that in our case with snowball sampling we didn’t identify any additional relevant
article, but in the case that relevant articles were retrieved, a refinement of keywords and
reprocess of the systematic mapping study would have been required as described in Figure 4.3.



www.manaraa.com

Chapter 4. Research methodology 29

are presented in our studies’ selection, we integrated the traditional framework of
SMS with an additional step, that is the evaluation of paper’s rigor and relevance.

We used a systematic and validated model developed by Ivarsson and Gorschek
[121] to evaluate the scientific rigor and the industrial relevance of each paper.
The model provides a complete set of rubrics to measure rigor and relevance
dividing these two factors in di↵erent aspects, and quantifying the way in which
each aspect is considered in the study (also see [122] for a real application).

As described by the authors, rigor refers to the precision or exactness of the
research method used and how the study is presented. Aspects that are considered
are:

• Context - description of development mode, speed, company maturity and
any other important aspect where the evaluation is performed.

• Study design - description of the variable measured, treatments, control
used and any other design aspect considered.

• Validity - description of di↵erent types of threats to validity evaluating
conclusion, internal, external and construct validity.

On the other hand the relevance of an article consists of the realism of the
environment where the study is performed and in the degree to which the research
method undertaken has been investigated in several literature reviews. Aspects
that are considered are:

• Subjects - use of subjects who are representative of the intended users of
the technology.

• Context - use of settings representative of the intended usage setting.
• Scale - use of a realistic size of the applications.
• Research method - use of a research method that facilitates investigating
real situations and relevant for practitioners.

Aspects related to the rigor of the study are scored with three score levels:
weak, medium and strong description. Whilst, aspects related to relevance are
scored 1 if contributing, 0 otherwise. For the sake of brevity we reported only
the high-level quantification table (see Table 4.4). The detailed rubrics, used to
evaluate the articles, can be found in [121].



www.manaraa.com

Chapter 4. Research methodology 30

Rigor Ri = Ri1 + Ri2 + Ri3

Context described (Ri1)
Study design described (Ri2)
Validity discussed (Ri3)

Each aspect scored according to following scheme

Weak presentation 0
Medium presentation .5
Strong presentation 1

Relevance: Re = Re1 + Re2 + Re3 + Re4

Context (Re1)
Research method (Re2)
User/Subject (Re3)
Scale(Re4)

Each aspect scored 1 if contributing to relevance, 0 otherwise

Table 4.4: Rigor and relevance quantification

Finally to obtain the final score of rigor and relevance the sum is performed
according to the number of aspects that are classified as contributing to the
industrial rigor and relevance respectively.

With this approach we intended to extend the scope of the traditional Sys-
tematic Mapping Study, which is limited to paper classification without assessing
the quality of underlying studies. In our research, by combining a classic SMS
with the study of rigor, relevance and the creation of a simple ranking function
(see next subsection), we obtained a quick tool to partially overcome the above-
mentioned limitations.

4.2.7 SMS - Ranking of studies

The final step, which concludes the mapping study, is the creation of a ranking
function. We assigned a score to each paper, evaluating it in face of its classifi-
cation schema’s categories, rigor and relevance score, and two additional factors
which characterize the venue of the study and the publication year.

We provided a rough estimation of the actual value that each paper brought
to the research domain, by giving more importance to recent rigorous journal
articles entirely devoted to the topic and presenting empirical results relevant
to practitioners. To reflect those criteria, we used tables for converting each
factor into an arbitrary numerical value in the range between 0 and 10. The
conversion tables which were used to quantify the internal score of each dimension
are discussed in Appendix A.3.3. The final ranking of the 37 relevant articles is
presented in Results and analysis (see Subsection 5.1.4).

4.2.8 SMS - Validity threats

We identified potential threats to the validity of the systematic mapping and its
results, which are presented in this section together with the mitigation strategies,
structured following the example of a recent study [123].



www.manaraa.com

Chapter 4. Research methodology 31

Publication bias

Systematic reviews su↵er from a common bias due to the general problem that
positive outcomes are more likely to be published than negative ones [123]. In our
study this threat is moderate, since the conclusions we draw and the theoretical
framework we present are based on empirical data. The literature review is only
used to make a comparison and validation of our results.

Threat to identification of primary studies

The approach we used to construct the search string (see Subsection 4.2.2) aimed
to collect the larger number of articles related to software development in startups
as possible.

However, a limitation of the current search string lies in the non-inclusion
of the stand-alone terms “startup” or “start-up”, to avoid the screening of more
than 20 thousands papers, mostly irrelevant because related to the english phrasal
verb “to start up”, largely used in many disciplines to indicate the commencing
moments of an engine. Then, to mitigate the risk of losing some relevant articles,
we included in the search string many redundant terms in logical or, to increase
the chances of catching any paper somehow related with software development
in startup companies limiting the risk of obtaining an unreasonable number of
articles with an extremely low precision (defined as the ratio of retrieved relevant
and all retrieved [124]).

Considering the precision rate of the current search string (3.92%), the value
we obtained is very low anyway, with 37 studies selected from an initial sample
of 943. However we were not interested in obtaining high precision as much as
we wanted to obtain an high recall, that is the expressed by the ratio of retrieved
relevant articles and the existing relevant items [124]. Despite the recall is based
upon an unknown quantity hard to estimate (especially in an area where no
systematic reviews have ever been conducted to the best of our knowledge), to
have our evaluated and validated relevant list we submitted our systematic review
results to prominent researchers in the area (identified with the mapping study
itself) immediately after executing the methodology. The risk of leaving out
relevant results is further mitigated by the use of multiple databases, which cover
the majority of scientific publication in the field.

We were not able to retrieve 19 items since they were not available neither in
online catalogs nor in the three libraries we consulted. However, this is a minor
risk as we had access to their titles, keywords and venues, which gave us a good
degree of confidence they were not relevant. Additionally, considering our 3.92%
precision rate, the number of relevant articles in this small sample would have
been statistically around one.

Another threat was given by the fact that relevant studies could have been
published after the actual execution of the systematic review. To mitigate this risk



www.manaraa.com

Chapter 4. Research methodology 32

we used the alerts featured on Engineering Village and Google Scholar database
which allowed us to receive a weekly newsletter with new items targeted by our
search string. At the current date (29th October 2012) no new relevant studies
emerged.

Furthermore we noticed a high inconsistency in the use of the word startup
by di↵erent researchers, even in the same area. We couldn’t identify a single and
widely accepted definition of startup, but we identified multiple and somewhat
conflicting definitions. With the support of thesaurus and librarians specialized in
software engineering we considered their suggestions for additional improvements.
Under these conditions, the attempt to identify a body of knowledge and restrict
the scoping of our research was highly challenging. However, with the systematic
study we were able to get a complete overview of how the term is used and
sometimes misused, so we could focus the remains of our research on the early
stage of startup companies, that is the most neglected stage by empirical primary
studies so far.

Since startups and entrepreneurship in general are appealing for many sectors
of the economy, an additional threat lies in the fact that some relevant information
can be found in other academic sectors not considered in this systematic review
(e.g. Finance, Marketing, Management, or in several non-peer reviewed sources
such as books, technical reports or essays). To reduce the potential impact of this
risk, we integrated our systematic study with a non-systematic review of promi-
nent work in the grey literature and in other siblings disciplines (see appendix
A.2).

Threats to study selection and data extraction

An important bias to consider - as discussed in [118] - is related to the selection of
publications and the data extraction process, that in our case has been mitigated
with an up-front definition of the inclusion/exclusion criteria [108]. The extent
to which a SMS is able to provide an overview of software engineering topics
has been su�ciently reported by the comparison analysis with the systematic
literature review, discussed in [1].

The selection of relevant articles can be further biased by the personal opin-
ions of researchers executing the process. To mitigate this threat and partially
supply to our junior experience, we defined and documented a rigid protocol for
the selection of each paper and we collaborated to mutually adjust each other
biases by conducting the selection together and dedicating a reasonable amount
of time to review conflicts, as suggested by [108]. Furthermore we documented
the rationale behind the exclusions, to support us in the process of consensus
creation by coherently consulting the history of previously taken decisions.

Another threat is related to researchers’ personal judgments, which can inter-
fere with the evaluation of rigor and relevance of selected studies. However, the
model we used to perform the assessment [121] provides rigorous guidelines and



www.manaraa.com

Chapter 4. Research methodology 33

detailed rubric tables which have been observed to express our judgment more
objectively.

An additional threat can undermine validity of the ranking of selected studies
(see Subsection 4.2.7) that we computed, as the scores for each category and the
weights for each dimensions have been arbitrarily chosen to reflect our criteria.
However, we consider this threat marginal as we didn’t draw any important con-
clusions based on the ranking table and we specified that the score assigned to
each paper has been used only to sort lists of relevant studies in the tables along
the document. Furthermore we used an automatic spreadsheet to compute the
final scores, which allowed us to adjust scores and weights, observing the e↵ect
of the final ranking in real time. For validating our ranking, we tried to modify
scores/weights values several times, and we observed that the final ranking was
not significantly altered by reasonable numerical adjustments, as long as we kept
the order of importance between concepts.

Additionally, we used multi-methodological triangulation [125, 104] to confirm
the validity of our results, by intersecting the data extracted with systematic map-
ping study to the empirical data which we obtained by semi-structured interviews
and follow-up questionnaires.

4.3 Case study

4.3.1 Case study - Overview

For the case study of this research we investigated the software development ap-
proach undertaken by practitioners in early-stage startups. Following a Grounded
Theory (GT) methodology [105], we executed 13 semi-structured interviews inte-
grated with follow-up questionnaires. From this, we elaborated and extracted a
theoretical framework explaining the underlying phenomenon of software devel-
opment in startups.

Grounded Theory methodology is described by Robson as “the best approach
to answer the question - What is going on here?” and defined by its creators
[103] as “a set of well-developed categories ( e.g. themes, concepts ) that are
systematically interrelated through statements of relations to form a theoretical
framework that explains some relevant social, psychological, educational, nursing
or other phenomenon”.

Despite GT has its roots in the social sciences, in the recent past it has been
increasingly used by Information System researchers and for many years it has
been almost ignored by the SE research [2]. In 1997 Bertelsen advocated for a
need of more qualitative research in SE [126], and in the last decade we assisted
to an increasing number of publications that used a GT-like approach in SE
[29, 2, 58].

Following the grounded theory principles, detailed in this section, we at-



www.manaraa.com

Chapter 4. Research methodology 34

tempted to capture the most relevant aspects of software development from
startup practitioners, letting a theory emerge from the interviews and adjust-
ing the research hypotheses and questions as we proceeded through. During
these interviews we collected data related to engineering activities undertaken by
startups in the time frame between the idea conception and the first open beta
release of the product. Then, we proceeded to the analysis of the data, finding
important relations among concepts with a formal approach.

As suggested by Coleman, in view of the di↵erent versions of grounded theory
which emerged in the last years, researchers should indicate which “implementa-
tion” of the theory is being used [2]. In fact, after the methodology was initially
introduced, its original authors had some divergences regarding how the theory
should be formed by analyzing the data (Strauss and Corbin on one side, Glaser
on the other). Glaser advocated for a more puristic approach, where the theoreti-
cal categories should “naturally emerge from the data”, whilst Strauss and Corbin
formulated an updated version of the methodology, which leaves to the researchers
an higher degree of freedom. The latter approach empowers researchers’ “theo-
retical sensitivity” [127], and encourages them to outline the research problem
beforehand. Since the knowledge obtained from parallel execution of the SMS
(see Section 4.2) and our direct experience with startups companies provided
a good initial level of knowledge, in this study we use the Corbin and Strauss
approach [128].

Performing GT studies requires well-trained researchers with a good level of
experience. To partially supply to this lack we trained ourselves for one month
in a low-risk environment, by simulating both face-to-face and remote interviews.
Hence, we gained a good skill-set which allowed us to face challenges of real-setting
interviews by dividing the several tasks between the two of us (recording, taking
notes, checking time, mark checklists, elicit answers, extrapolate data, . . . ). We
recorded ourselves during these simulations, and improved our performance by
listening the recordings and mutually adjusting each other’s parts.

The basics elements which constitute the grounded theory methodology areq
concepts, categories and propositions. Concepts are the basic units of analysis:
they represent the conceptualization of underlying phenomenon captured by la-
bels called codes, which are extracted from the interview transcripts. The second
elements of GT are the categories, which are the high level abstraction of the
concepts they represent. Categories are generated by comparing similarities and
di↵erences among the di↵erent concepts. The third element are propositions that
describe the relations between a category and its concepts and between discrete
categories [127]. Those elements were identified by means of coding processes
performed on interviews’ transcripts.

The coding process is divided in three parts10:

10GT does not force researchers to move between these parts in a consecutive manner.



www.manaraa.com

Chapter 4. Research methodology 35

• Open coding.
• Axial coding.
• Selective coding.

Open coding refers to the extrapolation, labeling and categorization of con-
cepts from the raw data. Axial coding refers to the activity of putting together
di↵erent concepts into categories, defining relations between them. Finally selec-
tive coding defines connections between discrete categories, integrating them into
the initial theoretical framework [128].

As discussed above, the generation and development of concepts, categories
and propositions is conducted with an iterative approach, where researchers con-
stantly adjust the theoretical framework to form the emerging theory, that is the
abstraction of identified conceptual terms, from the understanding of the dynam-
ics of the substantive field of research [127].

To provide the reader with a practical example of the coding process, here
we present a typical GT procedure in a fictitious context. Assume that a GT
research investigates the use of test-driven development (TDD) in comparison
to test-last development (TLD) to understand which approach leads to higher-
quality products. Basic units of analysis (concepts) might be extrapolated by
statements of interviewed practitioners such as: “TDD helps us to focus on which
results should be returned by functions, shaping an initial modularization of the
final system”. From this, the researchers extrapolate another code: “TDD aids
system modularization”. Then another interviewee claims that “when we moved
from TDD to TLD we had problems in de-coupling modules in the system”. From
this we create another code: “TLD made system cohesion harder”. Afterwards,
assuming that these same concepts are significantly reported by the majority
of the practitioners in the sample, the two concepts might be abstracted into a
category labelled “TDD enhances architectural design”. The category propositions
describe its relation to underlying raw codes, in this case indicating in which terms
TDD enhances architecture and in what context. Assuming that researchers
identified other categories such as “TDD decreased the number of reported bugs”
and “TLD augments the project complexity”, these two can be linked with the
first one to formulate an emergent theory, e.g.: “By adopting TDD developers
improve architectural design controlling the final project complexity, leading the
system to higher product reliability in terms of lower number of defects”11.

Going back to our study, beside the GT interviews, in order to clarify doubts
and collect quantitative data that we were not able to capture during interviews,
we designed a customized online follow-up questionnaire for each company which
participated in the interviews. In particular, with the follow-up questionnaire, we
aimed to capture, evaluate and assess aspects related to:

11This is only a very expedite example of GT coding process which aims to facilitate the
reader in understanding the coding process.



www.manaraa.com

Chapter 4. Research methodology 36

• The fulfillment of quality aspects that have been considered important in
the interviews.

• The e↵ort distribution between the di↵erent engineering activities of soft-
ware development.

• The contribution level of engineering elements identified during the inter-
view process.

• The level of satisfaction with the software development approach.
• Important retrospective thoughts about software development approach
with a perfect hindsight.

Despite some of these aspects were already partially covered during interviews,
by providing to our respondents a di↵erent mean of answering similar questions,
we could validate and review our grounded theory results. Thanks to the in-
creased process awareness, which arises after the interview (as reported by many
respondents), questionnaire results were used to confirm and adjust the emerging
theory and they were not used to draw any important conclusion.

Following principles and guidelines for designing good SE questionnaires (in
particular Wholin [129] and Kasunic [104]), we created an online template ques-
tionnaire12 with the basic structure and general questions to be adapted to each
company immediately after each interview. The initial design of the question-
naire - divided in four parts with di↵erent concerns - is presented in Subsection
4.3.2. We combined multiple choices with open questions and iteratively refined
it by collecting feedback with students’ companies (the same safe-environment
companies utilized during interview design process detailed in Subsection 4.3.2).

A complete overview of the overall case study methodology and execution is
shown in Figure 4.7, which presents how we tailored the general GT methodology
to our specific needs.

12We used an online service for designing and executing follow-up questionnaires: http:

//www.surveymonkey.com .

http://www.surveymonkey.com
http://www.surveymonkey.com


www.manaraa.com

Chapter 4. Research methodology 37

Figure 4.7: Grounded theory study process overview

The initial design of the case study is supported by the results of the sys-
tematic mapping study which contributed to define the initial questions for both
questionnaires and semistructured interviews. The process depicted above (Fig-
ure 4.7) is evolutionary and a↵ects the design at each new iteration. In data
collection the empirical results are stored in a single case study database and
subsequently processed in data analysis to form the theoretical categories. At
each iteration the new emergent theory is updated following a formal procedure
(Theory generation), and after verifying that the theoretical saturation13 of cate-
gories has been achieved, we finally proceeded to theory validation or performed
another complete cycle.

The detail process is thoroughly described in the following subsections which
are structured according to the five macro phases depicted in bold in Figure
4.7: Design and execution (see Subsection 4.3.2); Data collection (see Subsection
4.3.3); Data analysis (see Subsection 4.3.4); Theory generation (see Subsection
4.3.5); and finally Theory validation (see Subsection 4.3.6).

13The point at which executing more interviews wouldn’t bring any additional value for
constructing the theory.



www.manaraa.com

Chapter 4. Research methodology 38

4.3.2 Case study - Design and execution

The first step was supported by the systematic mapping study (see Section 4.2), in
which the research problem was refined throughout di↵erent stages. In fact, in the
very first phase the initial problem has been narrowed down to outline the domain
of our study, even though still broad enough to allow emerging new theories and
to adjust the scope of the research [127]. Then, as shown in Figure 4.8, the
design and execution process was conducted by means of two sub-processes: the
interview design process and the initial design of questionnaire.

Figure 4.8: Design and execution process (extracted from Figure 4.7)

Interview design process

To design our interviews we defined an iterative approach with di↵erent phases
illustrated step-by-step in Figure 4.9.

Figure 4.9: Interview package design process

The process depicted above adopts the conventions defined in Appendix A.1
and is thoroughly discussed in this subsection.



www.manaraa.com

Chapter 4. Research methodology 39

The interview design process is centered around the creation of a fully doc-
umented interview package containing all the material necessary to execute the
interviews. The interview package, thoroughly described in Appendix A.4.1, un-
derwent several radical changes as its first draft has been subjected to several
static reviews, internal executions and both remote and face-to-face mock inter-
views with colleagues and friends’ companies. This allowed us to incrementally
refine the quality of the interview, to be able to improve our skills and to learn
how to react in di↵erent situations before executing field-interviews in the real
setting.

After the approval of our supervisors, we tested the interview package in a
real-world pilot interview, extracting the results into a report. We fine-tuned
the design following the improvement suggestions independently provided by our
supervisors. Then, we finally started performing the actual interviews. Following
a GT approach, we coherently updated the interview Package adjusting it to the
emerging insights from interviews at each step.

As we were iterating through the interviews, we analyzed new data accord-
ingly, by updating codes and categories on necessity, and taking notes in the
form of memos to adjust the new emerging theory. To improve the speed of
the coding process (see Subsection 4.3.4), we analyzed all the transcripts one
part at-the-time: transcripts followed the semi-structured interview format, and
this approach enhanced the chances of finding similar codes across di↵erent tran-
scripts, allowing us to quickly iterate and update categories.

To optimize this process we concentrated interviews’ execution in a three-
weeks time frame, where we worked intensively for transcribing, coding and ana-
lyzing the extrapolated reports, while producing the customized follow-up ques-
tionnaires (see Subsection 4.3.2). Working with such a fast-paced approach let
us be e↵ective and e�cient in updating the design asking the right questions,
updating the emerging theory accordingly and limiting possible interferences of
longer time gaps between interviews.

Company sampling – The sampling strategy took place in two distinct phases.
At first we executed an initial convenience sampling [130], which led to the identi-
fication of eight companies. Then we included five additional startups during the
theory formation process (theoretical sampling) iteratively improving the sample
according to the emerging theory. The initial sampling process is shown in detail
in Figure 4.10.



www.manaraa.com

Chapter 4. Research methodology 40

Figure 4.10: Initial company sampling

The blocks in the figure containing a bold identifier in brackets (e.g. TMPL 0
refer to a specific artifact included in the interview package detailed in Appendix
A.4.1. The identifiers are used in this chapter in order to refer to specific artifacts.
At first we started looking for startups from di↵erent sources: public databases,
local incubators, online communities and our supervisors’ contacts. We created a
first list of companies in di↵erent market sectors and we refined that list excluding
companies which clearly didn’t comply with our criteria (established companies,
hardware companies, . . . ) and including only those companies that were clearly
satisfying most of the features of software startups as identified with the SMS14

(see Subsection 4.2.5). In addition, since we wanted to base our case study in
early-stage startups, from idea conception to first open beta release, we tried to
sample only those companies that were founded in the last two years.

As shown in Figure 4.10, after enriching the list of candidates companies
with our personal contacts, we collected some general information (product, size,
location, description, founding year) and, where possible, the contact information
of their founders CTO/engineers. Then we packaged the data into a spreadsheet
(TMPL.0 Companies overview) which was used for keeping track of interviews’
status throughout the whole process.

We prepared a template email (TMPL.2 Ack email) to introduce our research

14In particular we prefered companies with: small founding team; one product recently
launched; web innovative applications; and working in highly scalable markets.



www.manaraa.com

Chapter 4. Research methodology 41

project and to show to the company our interest in conducting an interview with
them about their software development strategy. After customizing the template
for each company, making it sound more personal, we sent out our first batch
of emails and waited for an answer. In order to improve the response rate we
o↵ered to respondents the possibility to choose from a list of rewards [131]. We
sent a total of 16 emails receiving 9 responses (6 positive) within one week. To
improve the response rate of 37.5% we prepared a script for executing a cold call
(TMPL.1 Cold Call) to those startups which didn’t answer our message, asking
if they were not interested in the interview or they just didn’t receive the email.
After executing the phone calls we were able to schedule interviews with 2 more
companies, reaching a total number of 8 startups. Hence, we achieved an initial
response rate of 50%, which is satisfactory given the notorious lack of time of
startups employees.

As recommended by the GT approach [103], we subsequently integrated the
initial sample with five more companies as we were getting insights through the
first batch of interviews. The candidate companies have been selected according
to the emerging grounded theory, to be able to gather more evidence as new
theoretical categories were formed (hence, theoretical sampling [127]).

Our final sample was composed by 13 CTOs and founders of software startups,
mostly web and mobile, in di↵erent stages of their lifecycle15. The startups, which
participated in our empirical studies, are presented in the following list16 (ran-
domly sorted): Mashape [132], Blomming [133], Searcheeze [134], Proliker [135],
WeddingSnaps [136], Podium [137] , Mangatar [138] , Circleme [139], TimeDoctor
[140], TheBetaFamily [141], Next [142] and Amen [143].

Although these startups are all young companies, some of their founders and
mentors have an extended experience in the software industry, gained from being
directly involved in companies such as Google, Microsoft, Amazon and Twitter.

Case study execution – We executed the case study online, supported by
tools for video conferencing recording each complete session. A step-by-step
workflow have been followed (detailed in Figure 4.11), which allowed us to per-
form the interviews, collect additional material, prepare the customized follow-up
questionnaire and iteratively adjust the interview package artifacts.

The interviews took place with a key member of the development team (often
the CTO or CEO himself) immediately followed by a preliminary analysis of the
collected data aiming to find inconsistencies, catch the most relevant parts of the
speech, and identify engineering elements mentioned during the interview. Where
possible we collected artifacts (TAN 0 ) to assess and verify the reliability of the
respondents statements, by triangulating the sources from which we obtained the
information, following suggestions of Creswell and Miller [144].

15See Section 5.2 for detailed information about the selected companies.
16One company requested to remain anonymous.



www.manaraa.com

Chapter 4. Research methodology 42

Figure 4.11: Interview execution process

After the interview we sent a first email to show our gratitude to the inter-
viewee (TMPL 3 ) and another one to kindly ask them to answer a short online
follow-up questionnaire (FUP 0, Subsection 4.3.2) tailored to their interviews.
We eventually concluded our process transcribing the interviews and packing the
overall results in a summary (FUP 1 ) to be approved by the respondent and
peer-reviewed by our supervisors. We executed a full iteration of this process af-
ter each interview adjusting the questions of the interview package by the support
of information gathered from previous results and comments.

We packaged all documents, files and tools necessary to perform our interviews
in an organized collection of artifacts. The interview package, which has been
incrementally improved and structured, is the output of all the activities involved
in the interview design process (see Figure 4.9). The package contains a set of
files (38) clustered in 9 directories, described in Table 4.3.2.



www.manaraa.com

Chapter 4. Research methodology 43

ID File Name Description

TMPL Templates Models of documents to be adapted to di↵erent companies.
SUP Support Material All the materials that supports researchers before and after the

interview.
TC Topic Cards The actual scripts of the interview, grouped under single topic cards

(questions, prompts, definitions, verbatims, ...), to be sequentially
used during the interview.

CLIST Checklists Useful lists of engineering concepts that might be used to help
researchers during the interview (ISO standards, methodologies,
tools, frameworks, ...) .

HLIST Hand Lists Lists that are shown to the respondent to assist in answering spe-
cific questions.

TOOL Tools Software tools to aid researchers during face-to-face and remote
interviews.

FUP Follow-up Useful resources for the follow-up questionnaire.
RC Recordings All the recordings acquired during the interview (audio, video,

notes, ...).
TAN Data Triangulation Resources provided by the company to support empirical data.

(documentation, models, artifacts, ...).

Table 4.5: Interview package - Structure overview

The detailed content of each category is explained in Appendix A.4.1.
Clustering files and packaging them together helped us in obtaining some

benefits:

• Ease of search, organize, update and maintain the file system.
• Separation of concerns of each document, improving the readability during
the interview, and letting multiple researchers working on di↵erent aspects
of the interview at the same time.

• Provide to researchers a tool that helps them conducting a complete and
detailed interview covering di↵erent important aspects of software develop-
ment.

• The possibility to refer to the unique identifier assigned to each document
throughout this thesis document.

• Provide to other researchers a way to reproduce our interviews, validating
our results through experimental replication, and improving the design of
the interview17.

• Ensure coherence between interviews, generating comparable results.

We documented how resources contained in the package have been used during
the interviews, displaying them in a chart with swimming lines for the di↵erent
actors involved (Figure 4.12). It is contained in the package file SUP 4. In
the same document we provide two checklists, pre and post-interview, to help
researchers assessing if they are following the procedure described.

17The interview package has been released under MIT License [145] and it is available for
download on Github [146]. We encourage anyone who has interests in pushing this work forward,
to fork the repository and contribute to it. If used in a research context, please inform us in
order to be able to track where and how the interview package has been used.



www.manaraa.com

Chapter 4. Research methodology 44

Figure 4.12: Interview package usage

The chart shows identifiers of each resource (identified by a unique label be-
longing to the interview package) for reproducing the interview process both in
face-to-face and remote settings. The time axes has been divided in five distinct
phases with di↵erent concerns (detailed in Table 4.5), while the vertical axes
separates the competences of each actor involved. Interviewer 1 is in charge of
asking questions (detailed in Appendix A.13) while Interviewer 2 has supervisory
responsibilities such as:

• Monitoring and updating the status and execution time of each step.
• Writing notes as the interview proceeds.
• Monitoring the audio recordings of the conversation.
• Taking snapshots of the whiteboard.
• Monitoring the concepts being covered, in case of something important is
skipped.

• Adjust interventions of Interviewer 1.

The following table presents the five phases in which the interview is divided,
both temporally and thematically.



www.manaraa.com

Chapter 4. Research methodology 45

ID Phase name Description Duration
est. [mins]

P1 Opening Introduction to interview, disclaimer, and
opening questions.

5

P2 Product features Elicitation of the main features and character-
istics of the product that has being developed
by the startup.

10

P3 Non-functional attributes Elicitation of main non-functional aspects that
have been particularly taken into consideration
during software development.

20

P4 Engineering activities Discovery and elicitation of the software de-
velopment strategy undertaken by the startup,
from the idea conception to final deployment of
the first public release.

55

P5 Closing Closing questions, cool-o↵ and appreciations. 5

Table 4.6: Temporal division of interviews

The last column presents an estimation of the duration of each phase, based
on the interview we executed. Note that the discovery of engineering activities
(P4), requires an extended time18 (almost an hour).

During the process, it is important that Interviewer 1 actually drives the
interview through di↵erent aspects covering all relevant topics, but at the same
time he should be flexible letting the respondent moving across di↵erent thematic
areas with a reasonable degree of freedom. Observe that during the phases P3 and
P4 the interviewee can support her answers skimming through lists of well-known
quality attributes (HLIST.1 ) and SE artifacts (HLIST.2 ).

Questionnaire initial design

The follow-up questionnaires are designed to capture additional data, gather miss-
ing information and confirm interview results with triangulation. An initial ques-
tionnaire template has been structured in four parts illustrated in this subsection
through an example. Starting from this template, questionnaires have been tai-
lored to each startup, partially taking advantage of the repertory grid principles
[147]. To obtain better chances of quickly obtaining responses, surveys have been
sent to respondents immediately after transcribing the interview results. Two
weeks after the conclusion of the last interview, we closed our follow-up question-
naires and collected the data.

Quality achievements – We used a rating scale [103] to quantify the degree
to which companies achieved the non-functional attributes they mentioned as

18We executed the interview process several times, and from the experience we gained, we
found optimal to have a five minutes break between P3 and P4 to quickly review partial results,
adjust the direction towards the next phases and release the tension. The more interviews
we did, the shorter the execution time was, since we gained more experience in eliciting the
information we really needed, leaving out marginal information (the first interview lasted around
two hours while the last interviews lasted less than one hour).



www.manaraa.com

Chapter 4. Research methodology 46

important for their product during interviews. Figure 4.13 shows an example of
how this question has been inserted in a matrix-like fashion.

Figure 4.13: Questionnaire template - Quality achievement

With this approach we aimed to understand if the quality strategies under-
taken by startups were perceived as e↵ective and eventually identify weaknesses
and patterns19.

E↵ort distribution – In the second part of the questionnaire, as shown in
Figure 4.14, we asked companies to evaluate the e↵ort they have put in each
development phase, according to what has been discussed during the interview
about the release of the first product20.

19Note that the identified quality attributes were initially considered according to the def-
inition of the ISO/IEC 9126. Then, they have been adjusted according to the practitioners’
responses.

20To limit respondents’ bias which could arise from the misconception of the word e↵ort, we
provided a common definition.



www.manaraa.com

Chapter 4. Research methodology 47

Figure 4.14: Questionnaire template - E↵ort distribution

Engineering elements – Moreover, in order to understand how engineering
elements helped startups in their development process we partially adopted the
repertory grid principles21 introduced in 1963 by Kelly [148].

The repertory grid represents a mechanism to aid the elicitation and evalua-
tion of individual’s experiences. It relies on the personal construct theory devel-
oped by Kelly in the context of his work as a clinical psychologist. The repertory
grid technique provides a structured format to help understanding how people
construct and evaluate objects. These objects are referred as elements (e.g. each
row of Figure 4.15 represents an element) and constructs, which are the ideas
the respondent holds about those elements. According to Kelly, individuals hold
di↵erent constructs based on their experience.

Since we wanted to emphasize respondents’ own opinion, without losing rigor,
we tailored the repertory grid to our research specific needs. In our case, we built
the elements using the engineering elements mentioned by practitioners during
interviews, and used one fixed construct representing the prominent software
development concern - shortening time-to-market. Elements have been further
adjusted to depict a consistent gri. In fact, when a change in constructs appeared
during an interview, we explored what the modification meant and adapted the
most appropriate type of grid for the identified changes.

A full repertory grid approach should report more than one construct and
interactively adjust them with the interviewees. Nevertheless, in this specific
case we were only interested in one specific construct. According to concepts
emerged with the SMS and the first interviews, the repertory grid focused around

21For a practical guideline to use this methodology in SE empirical researches the reader is
referred to a recent article of Edwards et al. [147].



www.manaraa.com

Chapter 4. Research methodology 48

time to market as the most prominent construct22.
As shown in the example extracted from a questionnaire instance (see Figure

4.16), respondents were asked to evaluate each engineering elements within a
five-steps rating scale.

Figure 4.15: Questionnaire template - Engineering lments

Engineering elements have been subsequently mapped to GT categories (see
Appendix A.4.5).

Closing questions – In the last part of the questionnaire respondents ex-
pressed their degree of satisfaction with the overall software development ap-
proach undertaken for releasing the first version of the product. This measure
can be used as a proxy for the fulfillment of their way of working. In addition,
some open ended questions helped us in clarifying doubts and obtaining perfect
hindsight suggestions. An example of the last part of the questionnaire is shown
in Figure 4.16.

22This choice was taken also according to the time that startups’ practitioners were able to
grant to the study



www.manaraa.com

Chapter 4. Research methodology 49

Figure 4.16: Questionnaire template - Closing questions

4.3.3 Case study - Data collection

The approach undertaken to collect the data, known as data triangulation, in-
tegrates multiple data sources converging on the same phenomenon. As shown
in Figure 4.17, questionnaire results and interview transcript of a company were
stored in a single case study database.

Figure 4.17: Data collection process (extracted from Figure 4.7)

After transcribing the interview, we extracted conceptual relations, and then
we integrated them with the survey’s results. A well structured case-study
database allowed us to easily retrieve and seek for information, assembling the
evidence from the case study reports, as described also in [149]. The database has
been stored and constructed using the qualitative data analysis software package



www.manaraa.com

Chapter 4. Research methodology 50

AtlasTI23 - one of the most suitable tools for GT [2].
Entering the field, we overlapped interviews with questionnaire results to ad-

just the data collection and take advantage of emergent themes and reveal pos-
sible inconsistencies. The data was analyzed simultaneously and with flexibility
in mind in such a way that adjustments were made according to the emerging
findings.

4.3.4 Case study - Data analysis

The raw data were subsequently processed in four steps (see Figure 4.18), namely
data ordering, coding, theoretical framework and ranking of categories.

Figure 4.18: Data analysis process (extracted from Figure 4.7)

A data ordering procedure was necessary since interviews were spread across a
multitude of topics. Therefore transcripts have been structured in thematic areas
accordingly to di↵erent topic cards used during the interviews. We proceeded
horizontally between same thematic areas of transcripts to be able to identify a
better number of similar concepts, rather than going through an entire transcript
at the time.

Once the data were ordered, we executed the process of coding interviews,
following the steps listed below:

• Labels were assigned to raw data, and a first low-level conceptualization
was carried out using both in-vivo and open coding [103].

• Concepts were grouped together into theoretical categories and subcate-
gories. By means of axial coding we first described the di↵erent relations
between subcategories, and then relations between subcategories and cate-
gories.

23Available online at http://www.atlasti.com/ .

http://www.atlasti.com/


www.manaraa.com

Chapter 4. Research methodology 51

• Categories’ groups were refined several times in the attempt to create di↵er-
ent level of abstractions and adjusting concepts, aided by a simple knowl-
edge management tool24.

• Consistency among categories were validated by exploring and analyzing
links among subcategories by means of the selective coding.

• The core category - the one with the greatest explanatory power - was
identified by analyzing the causal relations between high-level categories.

During data extraction we used the technique of in-vivo coding since “direct
quoting from the transcript give more expressive power to the data” [103] com-
bined with the more descriptive procedure of open coding (see Appendix A.4.3).
Following the example of other grounded theories, developed in related areas
such as Information Systems [150] and Software Process Improvement [151], we
performed the high-level conceptualization during creation of categories, in the
process of refining axial and selective coding.

Given the large number of codes25, categories, properties, propositions and
related questions that evolved from the analytical process [127], an important
activity that helped the coding process was memoing. It constituted an impor-
tant component involved in the formulation and revision of theory during the
research process. For this purpose we made use of three di↵erent types of memos:
code memos, theoretical memos and operational memos. The first type of memo
is related to the conceptual labeling of open codes, whilst the second type con-
cerns axial and selective coding, and thus focusing on paradigm features. Finally,
operational memos contain directions relating to the evolving emerging theory.

After the coding process the first representation of the experience map iden-
tified in GT is constructed by means of a theoretical framework. The theoretical
framework is presented in the form of a network of categories and subcategories
identified during the coding process. Precisely, categories and subcategories are
linked together according to cause-e↵ect relation [127]. During the formation of
the theoretical framework the researchers operated by means of a bottom-up ap-
proach. From empirical data and coding process, the framework was developed
into two di↵erent levels: a detailed level representing the network of subcate-
gories (identified mainly by axial coding process), and high-level representing the
network of main categories (identified mainly by selective coding process). When
describing the framework (presented in Section 6.2), we made explicit statement
of empirical data by reporting most important citations of practitioners, enabling
the reader to evaluate categories critically.

The theoretical framework, detailed in Section 6.3, is the structure that can
hold or support a theory of a research study, introducing and describing the

24Available online at https://workflowy.com/.
25630 unique code fully reported in Appendix A.4.3.

https://workflowy.com/


www.manaraa.com

Chapter 4. Research methodology 52

experiences gathered from the interviewed startups’ practitioners26. Presenting
the core category and its relations, the theoretical framework is able to explain
the meaning, nature and challenges of a phenomenon, often experienced but un-
explained in the world in which we live, so that we may use the constructed
knowledge and understanding to act in more informed and e↵ective ways.

4.3.5 Case study - Theory generation

As mentioned above, emergent theories have been tested integrating the sample
with additional companies selected following the principle of theoretical sampling
[149] (described in Subsection 4.3.2). To verify that we were close to the theory
saturation - the point at which executing more interviews wouldn’t bring any
additional value for constructing the theory - after coding the twelfth interview
(the last of the second sampling iteration) we executed an extra interview to assess
that no other relevant categories would have emerged. In fact from its transcript
we coded only 16 new concepts in the whole transcript, without finding any other
relevant category.

The process of theory generation took place at each iteration together with
interview execution, where we systematically analyzed the theoretical framework
by means of the paradigm model introduced by Corbin [127].

Figure 4.19: Paradigm model

As shown in Figure 4.19 the paradigm model is composed by:

• Causal conditions, the events which lead to the occurrence of the phe-
nomenon, that is our core category.

• Context, set of conditions in which the phenomenon can be extrapolated.
• Intervening conditions, the broader set of condition that the phenomenon
can be generalized.

26Following the example of other studies, categories composed by subcategories grounded in
less than 9 interviews, have not been considered in the formation of the final theory.



www.manaraa.com

Chapter 4. Research methodology 53

• Action/interaction strategies, the actions and responses that occur as the
result of the phenomenon;.

• Consequences, specification of the outcomes, both intended and unintended
of the actions and interaction strategies.

The role of the generated theory is to explain, predict and understand phe-
nomena, and, in many cases, to challenge and extend existing knowledge, within
the limits of the critical bounding assumptions. The final theory is presented in
Section 6.4.

4.3.6 Case study - Theory validation

The theory validation is conducted in four steps (see Figure 4.20):

• The theory has been evaluated using a systematic procedure presented by
[128] (static assessment).

• The theoretical framework has been compared with similar frameworks and
with results of studies identified with the systematic mapping of the litera-
ture (comparison with the state-of-the-art).

• The high-level relations between framework’s categories have been tested
using the empirical data collected during the case study (evaluation with
empirical data).

• Categories have been ranked by assignment of scores through the use engi-
neering elements identified by the follow-up questionnaire.

Figure 4.20: Theory validation process (extracted from Figure 4.7)

The static assessment is presented in the following part of this subsection
while the comparison with the state-of-the-art, evaluation with empirical data
and ranking of categories are discussed in Chapter 6 (see Section 6.6), entirely
dedicated to the presentation of the theoretical model.



www.manaraa.com

Chapter 4. Research methodology 54

Static assessment

Presenting GT is challenging for a researcher, who must pay attention to structure
the level of details included, and to the way data is portrayed to display evidence
of the emergent categories. In order to assess our research and determine if the
GT is su�ciently grounded, we used a systematic technique to assess the theory,
following evaluation lists and factors presented in [128].

First we had to consider the following factors:

• Fit, that describes the consistence of the theory with the real data.
• Understanding, that describes the degree to which participants agree with
the theory.

• Generality, that describes the level of abstraction of the theory, and how
su�ciently it can be adopted by practitioners without losing its relevance.

• Control, that describes how well the theory enables practitioners to fully
understand the described situation.

In order to achieve a high-level of fit between the theory and the raw empiri-
cal data, we started GT without any assumption on how the emergent patterns
would influence the research direction. Ideas and perceptions evolved during the
mapping study and interviews. In addition, constant comparative methods, over-
turning of some early categories as new data came to light, generation and testing
of interim hypotheses, and constant re-evaluation of the interview transcripts, en-
sured that researchers’ bias was minimized and theoretical fit maintained.

To represent understandable emergent theories, concepts and categories were
carefully developed using appropriate and self-explanatory codes. The developing
theory was not immediately presented to the participants to prevent potential
bias in the responses. But rather, the theoretical framework has been presented
and described to startups practitioners not involved in the data collection, whose
reaction was positively expressed.

From generality perspective, we developed a theory from abstract categories,
which allowed us to create a general guide to constantly changing situations.
Nevertheless, we took attention on maintaining a reasonable level of abstraction,
keeping focus on their sensitizing characteristics and providing low-level subgroup
of categories.

Finally, we provided a comprehensive set of categories with detailed interre-
lations to explain how the core-category is achieved and the reasons of its conse-
quences, in order to enable practitioners to independently understand and analyze
situations, predict changes and their consequences, and to be capable of revis-
ing actions or the theory itself. Using both methodological tools and features
provided by AtlasTI, we explored and tested:

• Each category and the strength of relations between them.
• Hypotheses, derived from and related to the emergent theory.



www.manaraa.com

Chapter 4. Research methodology 55

• Deviant cases to ensure robustness and general applicability.

Additionally, Strauss and Corbin provided a list of questions to assist in deter-
mining how well the findings are grounded [128]. They questions are as follows:

1. Are concepts generated, and are the concepts systematically related?
2. Are there many conceptual linkages and are the categories well developed?
3. Is variation27 built into the theory and are the conditions under which vari-

ation can be found built into the study and explained?
4. Are the conditions under which variation can be found built into the study

and explained?
5. Has the process been taken into account, and does the theory stand the test

of time?
6. Do the theoretical findings seem significant, and to what extent?

Answering the above questions, the concepts were generated according to the
coding process described in Subsection 4.3.4. They were systematically related
through the use of a network diagram (see figures 6.1 and 6.2), by which we
established the linkages and relations between the concepts. At each iteration
of the grounded theory process, we considered and examined a concept within
di↵erent conditions and dimensions, trying to incorporate opinions of a broader
as possible range of practitioners.

All the linkages and categories were constructed by the use of Atlas.TI and
compared according to the data analysis process defined in Subsection 4.3.4. Vari-
ations of the generated theory were applied according to raw grounded data with
the aid of codes and memos. Moreover during this study extensive explanation
of the concepts were presented in-vivo statements as reported by practitioners.

The process has been designed by the researches in di↵erent steps, explaining
and making clear the purpose of each of them. Thus, the same processes enable
other research to conduct the same study within similar contexts. Moreover com-
parison with the state-of-the-art has been applied in order to validate the theory
and enhance odds of its applicability within a wider time-frame (see Subsection
6.6).

Then, we performed an evaluation with empirical data, quantifying scores for
each company involved in our empirical study by defining metrics based on a set
of rubrics and evaluating startups accordingly, through an analysis of interview
transcripts and codes. The complete statistical procedure and provided rubrics
to quantify the measures are illustrated and discussed in Appendix A.5.

A further validation has been applied by the ranking of categories process.
We assigned scores to theoretical categories - identified with GT interviews (see
Subsection 6.6.5) - that most helped respondents to speed-up the development
process.

27Variation refers to the variety of contexts which theory can be applied.



www.manaraa.com

Chapter 4. Research methodology 56

Then, the ranking of categories process has allowed to compute metrics of fit-
ting between the theoretical categories and the engineering elements, contributing
to the validation of the suitability of the model. Results of this process are pre-
sented in Section 6.6.5.

4.3.7 Case study - Framework modelling

The last step described in the research methodology (see Figure 4.1) is the frame-
work modelling process. It consists of an in-depth comparison with well-known
frameworks to analyze similarities and di↵erences with the case study results.
The three main steps of the modelling process have been:

1. The identification of the operating-context of startups in comparison with
existing methodologies applied in the software industry (see Section 7.2).

2. The analysis of a decision-making framework to validate implications of the
generated theory (see Section 7.3).

3. The identification of an evolutionary model, fitting the results derived through
the case study (see Section 7.4) to help in defining objectives that startups
should achieve to support a future growth (see Section 7.5).

Therefore, through the above described modelling process, we analyze the
applicability of the theoretical framework in view of a future growth28, while
discussing the startup’s distinctive operational dynamics (see Chapter 7).

4.3.8 Case study - Validity threats

Since the case study is composed by two distinct research methods (interviews
and questionnaires) this section will consider the threats separately.

Interviews related threats

First of all, in our initial theoretical sampling there is a selection bias, i.e. we
didn’t contact startups that are out of business (failed), but only those startups
which are still operating at the moment. Interviewing ex-founders of failed star-
tups would improve the completeness of results, because they might have precious
insights about the mistakes they made. However, startups rarely fail for merely
technical reasons, but mostly for problems related in finding the right product/-
market fit [10, 152, 37]. Despite certain kind of development approaches can help
in realizing the right product/market fit early, respondents of failed startups, who

28Note that by definition startups are those temporary organizations focused on the creation
of high-tech and innovative products, with little or no operating history, aiming to grow by
aggressively scaling their business in highly scalable markets.



www.manaraa.com

Chapter 4. Research methodology 57

are currently not working on a new venture, would drive interviews in a direc-
tion which is not of much relevant from a SE perspective, talking mostly about a
business perspective29. We strongly believe that a good strategy, to mitigate the
above mentioned selection bias, is including in the initial sample founders who are
currently working in a healthy startup and have experienced failure in the past
(most of the founders we interviewed failed multiple times before succeeding).
We realized that these kind of serial entrepreneurs have a natural tendency to
give valuable advices regarding mistakes they have done before, contributing in
filling the lack of failed startups data in our sample.

Another threat lies in the choice of using long descriptive codes. Social scien-
tists discourage the use of descriptive codes to characterize a social phenomenon
in favour of more conceptual and general codes [153]. Yet, our research falls into a
radically di↵erent domain - that is - a first attempt of empirically understand the
software development approach in early-stage startups. In this context, descrip-
tive details are very important to let other researchers comprehend the underlying
phenomenon that is mostly unexplored to the date30, unlike most social-science-
related concepts.

Additionally, to limit the introduction of the authors’ personal bias, we used
the same approach we adopted for screening articles in SMS (see Subsection
4.2.3) performing the coding of transcripts in pair, creating mutual consensus
using memos and discussions.

The grounded theory study, as qualitative research, is based on respondent’s
opinions and it is filtered by their personal judgment. As a consequence, the find-
ings and the theory we generated stick to the data gathered in the field. Through
a deep description of phenomenon extrapolated and abstracted from the partic-
ipants’ interviews, data has been encapsulated into categories and subcategories.
Additionally, to support qualitative data, a triangulation of quantitative results
has been conducted by means of a follow-up questionnaire. However, the partici-
pant’s perception of what is taking place may be at odds with reality. Moreover,
participants may have reported what they believe the researchers wished to hear
(acquiescence bias). This may be particularly true in larger companies, which are
reluctant to admit the lack of practices and standard to the public [2], while in
startups the risk is moderate.

Furthermore, despite o↵ering the rewards to companies for participating in
the case study helped us establishing an initial trust with potential respondents,
one could infer that it has a↵ected the company sampling process by attracting
respondents particularly interested in receiving the prizes regardless of the sci-
entific interest in the research. However, since most of the respondents didn’t
claim the reward afterwards31, we can reject this hypothesis with a good degree

29We tried to have informal conversations with failed startups in the past.
30In terms of grounded theories.
31We repeatedly invited all the respondents to redeem the reward via email, and only two

respondents out of thirteen actually did so.



www.manaraa.com

Chapter 4. Research methodology 58

of confidence.
Another threat to the validity is the natural inclination of employees with a

managerial role (in the case of this research CTOs and CEOs) towards methods
and practice, which they propose to the team. Yet, this threat is very low in the
specific domain of early-stage startups, since the roles of managers and technicians
are blurred and most of the time are not defined at all.

The observer consistency (i.e. measuring the same behaviour at di↵erent time
intervals [103]) was not an important concern in view of the cross-sectional nature
of the study. On the other hand, the inter-observer agreement (i.e the extent to
which two or more observers obtain the same result when measuring the same
behaviour [103]) has been achieved by working in pair on every single task.

A reasonable heterogeneity of subjects emerged from the sampling process,
which contributed to increase the external validity of the findings without com-
promising the internal validity [129]. The instrumentation used for the interview,
consisting of a minimal set of online tools for video conference, had only a little
interference with the observation of the phenomenon itself. All the tools have
been tested and evaluated against alternatives, with the only scope of reducing
the friction introduced by the physical distance between researchers and respon-
dents.

Finally, the validity of any results based on field interviews is undermined, to a
certain extent, by the possibility of both intentional and unintentional lies in the
answers. To mitigate this risk, every time we doubted about the actual use of an
engineering element we asked if they could show to us the item in question, when
possible, to further triangulate the results. However, in case of the interviews we
performed, these kind of situation were very unlikely to happen since respondents
have been extremely clear about the fact that they adopt a very informal way of
working, and they don’t need to guarantee or proof quality standards required
by more traditional process assessments.

Questionnaires related threats

The main risk of adopting a follow-up questionnaire within a startup’s context
is based on the evidence of the limited time o↵ered by practitioners. In fact,
startups work under constant time-pressure, as confirmed by [16]. In view of this
constraint, the design decision of a minimal repertory grid32 was accordingly gen-
erated. But, although we may not be able to provide a high statistical reliability
for a minimal repertory grid, we can state that the elicited construct and elements
are trustworthy since result of an in-depth study based on the GT study [147].

The basic constructs of our repertory grid were firmly grounded during the
interviews. Moreover, when respondents had specific believes that important
constructs would have been related to the elements, we adapted the follow-up

32A repertory grid composed by one construct only.



www.manaraa.com

Chapter 4. Research methodology 59

questionnaire accordingly. Furthermore we always left an extra free-form field
in case the respondents wanted to add comments, and a N/A option for closed
questions.

Moreover, the extent to which results are related to the real-case scenario has
been attested by triangulating the expressed opinions with analysis of sample of
SE artifacts and documents (TAN 0 ) provided by respondents, when possible.
The accuracy and adherence of engineering activities have been firmly grounded
by interviews and by discussion with experts and supervisors.

In order to provide meaningful constructs, care of wording has been applied by
means of reviews in the literature, and when possible, using respondents’ own vo-
cabulary. Further adjustments were applied to specific cases when new constructs
were considered extremely important from the analyzed interview transcripts. Fi-
nally the results su↵er, to a certain extent, from the cognitive biases commonly
associated with questionnaires [154], especially response bias, acquiescence-bias
and social desirability bias.

However, all of the above mentioned threats are mitigated by the fact that
the results obtained from questionnaires constitute only a side-element of this
research, and they were never used alone to draw conclusions, which are instead
based on systematic processes of literature review and interview analysis.

In Subsection 5.2.4 we present other limitations of the online questionnaires,
while more general threats to the validity of the research results are finally pre-
sented in Section 8.5.



www.manaraa.com

Chapter 5

Results and analysis

This chapter is structured in two parts: the analysis of the systematic mapping
study results (see Section 5.1) followed by an analysis of the case study results
obtained through interviews and questionnaires (see Section 5.2). The analysis of
results is further protracted in Chapter 6 in which a theoretical model, obtained
with a cross-methodological combination, is presented, discussed and validated.

5.1 Systematic mapping study

This section presents the results of the systematic mapping study. From an initial
sample of 943 articles, we selected 37 relevant studies pertaining engineering
activities in startups. From them, we extracted a brief one-line sentence which
summarizes the content of the article and can be used by the reader to get a rough
idea of the study without reading each full article. For the sake of readability,
the detailed table is presented in Appendix A.3 (see Table A.3).

The section is structured according to the RQ-1 and its sub-questions:

• Publication distribution (see Subsection 5.1.1).
• Rigor and relevance (see Subsection 5.1.2).
• Contextual features of startups (see Subsection 5.1.3).
• State-of-the-art: summary (see Subsection 5.1.4).

5.1.1 Publications distribution

Figure 5.1 shows the frequency distribution of the publication year, from 1994 to
2011.

60



www.manaraa.com

Chapter 5. Results and analysis 61

Figure 5.1: Publication distribution-year

More than 80% of the studies in the selected sample have been published
in the last ten years, which compared to the long-standing history of the SE
discipline and more in general software companies (half of a century), is a quite
short time-frame. Only 7 relevant articles dated prior to 2002 discuss software
startup related issues1. To make a comparison, when looking at one of the closest
domain such as software engineering in small companies, we can observe how
the specific literature started many years before 2002. For example, in 1994
Brodman was already discussing how to adapt the CMM methodology to small
organizations [155]. Only 10 years later we find an empirical study inquiring
startups and development methodologies [79].

The yearly distribution of publications attest the novelty of the startup phe-
nomenon, which has been basically enabled and amplified by the potentially huge
markets and distribution channels o↵ered by the internet and mobile devices
[24, 35]. This context posed a set of new problems and challenges which can
hardly be faced using traditional approaches [13].

Publications distribution - Topics

To characterize what are the main topics covered within the area of engineering
activities in software startups, we assigned to each article a set of keywords based
on the content and the article’s own keywords (when available in the metadata),
during the process of keywording (see Subsection 4.2.4). From the 37 relevant
studies we extracted a total number of 327 keywords (117 uniques) averaging
about 9 keywords per article. To provide a visual representation of the content of
the studies, we show the frequency of occurrence of each keyword in a tag-cloud
fashion2 in Figure 5.2. The table containing the raw data, which was used to

1Other 4 articles were discarded in the selection process because they didn’t comply with the
selection criteria and then considered as obsolete (see screening process in Subsection 4.2.3).

2The tag cloud was generated with the online service (http://tagcrowd.com/).

http://tagcrowd.com/


www.manaraa.com

Chapter 5. Results and analysis 62

generate it, is shown in Appendix A.3 (see Table A.3).

Figure 5.2: Keywords cloud overview

The tagcloud (see Figure 5.2) was obtained by assigning keywords to each
study, reflecting the most important topics covered by the authors. Then, count-
ing the occurrence of each keyword, the reader can grasp an overview of the main
concern of the studies in the sample.

Beside the obvious high-frequency of the keyword software-startup, a pro-
nounced interest for topics such as management (19 times), software-process (17),
agile-methodologies (10) and web-development (7) is visible. For software-process,
it is worth noticing how studies are concentrated around process-improvement (4)
and process-formation (2). Among the di↵erent agile methodologies, a particular
consideration is given to extreme programming (7), while other methodologies



www.manaraa.com

Chapter 5. Results and analysis 63

such as RUP (2) and Scrum (1) received little attention. This represents a first
evidence of our initial assumptions that, in the general meaning of the word,
startups are agile companies.

Among others, we can observe some topics that are quite peculiar for this
area, such as time-to-market (6), rapid-development (3) and founder background
(14).

The particular attention given by the literature to those topics, especially as-
pects related to the team, agile-methodologies, time-to-market, and web-development,
helped us in refining the specific research domain, contributing to adjust the tra-
jectory of the case study conducted with startups’ practitioners (see Section 4.3)
and driving the formation of a theoretical model, which is presented and explained
in Section 6.2. However, the wide variety of topics, combined with the very-low
frequency in which each topic appears, represents a symptom of a general scarcity
of primary studies investigating specific issues.

Furthermore, by reading the articles and analysing their references, we ob-
served that the selected studies are poorly interconnected to each other. They
represents low intra-referencing among authors which makes it harder to ground
findings to existing works.

Publications distribution - Classification schema

The above identified keywords, together with existing taxonomies, contributed to
the formation of a formal classification schema. The final schema, which emerged
from the process specified in Subsection 4.2.5, consists of four dimensions or
facets :

• Research type: to represent the type of study undertaken.
• Focus : to describe the main focus of the research.
• Contribution type: to map the di↵erent types of outcome of the study.
• Pertinence: to distinguish between articles entirely devoted to engineering
activities in startups and the ones which are only mentioning something
related to it.

Each facet is formed by di↵erent categories described in the following four
tables - one per dimension - which were used to map the selected studies and
obtain a systematic map of the area.



www.manaraa.com

Chapter 5. Results and analysis 64

Research type Facet

Evaluation Research Methodology is implemented in practice and an evaluation of it is conducted.
That means, it is shown how the research is implemented in practice (solu-
tion implementation) and what are the consequences of the implementation
in terms of benefits and drawbacks (implementation evaluation). This also
includes to identify problems in industry.

Solution Proposal A solution for a problem is proposed, the solution can be either novel or
significant extension of an existing methodology. The potential benefits and
the applicability of the solution is shown by a small example or a good line
of argumentation.

Philosophical Papers These papers sketch a new way of looking at existing things by structuring
the field in form of a taxonomy or conceptual framework.

Opinion Papers These papers express the personal opinion of somebody whether a certain
technique is good or bad, or how things should been done. They do not rely
on related work and research methodology.

Experience Papers Experience papers explain on what and how something has been done in
practice. It has to be the personal experience of the author.

Table 5.1: Classification schema - Research type facet

The first dimension, Research type facet (see Table 5.1), can be used to distin-
guish between di↵erent types of studies abstracting from the specific underlying
research methodology, unlike other types of classification [121]. The research
types have been adapted from [156]. The second dimension describes the cat-
egories of the focus facet, which were obtained by clustering together sets of
keywords previously identified (see Table 5.2).

Focus facet

Type Description

Software development Engineering activities used to develop software.
Process management Engineering activities used to manage the development activities.
Tools and technology Instruments used to create, debug, maintain and support development ac-

tivities.
Managerial/organizational Aspects that are related to software development, by means of: resource

management and organizational structure.

Table 5.2: Classification schema - Focus facet

We separated studies concerning software development practices from articles
focused on the high-level process management. Furthermore we provide two ad-
ditional categories to classify articles focused on specific tools and technologies
and more managerial/organizational studies. The third dimension, Contribution
facet, is presented in Table 5.4.



www.manaraa.com

Chapter 5. Results and analysis 65

Contribution facet

Type Description

Model Representation of an observed reality by concepts or related concepts after
a conceptualisation process.

Theory Construct of cause-e↵ect relationships of determined results.
Framework/Methods Models related to constructing software or managing development processes.
Guidelines List of advices, synthesis of the obtained research results.
Lesson learned Set of outcomes, directly analysed from the obtained research results.
Advice/Implications Discursive and generic recommendation, deemed from personal opinions.
Tool Technology, program or application used to create, debug, maintain or sup-

port development processes.

Table 5.3: Classification schema - Contribution Facet

Similarly to the taxonomy used in [157], this facet expresses which kind of con-
tribution a study brings to the fields. Contribution types can be divided in weak
(advices and implications, lesson learned, tools and guidelines) and strong (theory,
framework/methods and model). Finally the pertinence facet (see Table 5.3) helps
in distinguish between studies fully pertaining to engineering activities in software
startups (full pertinence), studies partially focused on some engineering activities
in startups (partial pertinence), and finally studies only mentioning some relevant
information pertained to software development in startups (marginal pertinence).

Pertinence Facet

Type Description

Full Entirely related (main focus) to engineering activities in software startups.
Partial Partially related to engineering activities in software startups. Main re-

search focus related to engineering activities.
Marginal Marginally related to engineering activities in software startups. Main re-

search focus di↵erent from engineering activities.

Table 5.4: Classification schema - Pertinence Facet

Although the above presented classification schema was shaped around our
data sample, it can be used by other studies by applying some case-specific ad-
justments.

Publications distribution - Systematic map

Finally, by fitting the selected studies into the classification schema, we built the
systematic map, shown in Table 5.5.

Author
(year)

Pertinence Focus Research Type Contribution Type Ref.

Coleman
(2008)

Full Process Management Evaluation Research Model [27]

Coleman
(2007)

Full Process Management Evaluation Research Theory [2]

Coleman
(2008)

Full Process Management Evaluation Research Theory [29]

Kajko
(2008)

Full Process Management Evaluation Research Model [18]

Table 5.5 – Continued on next page



www.manaraa.com

Chapter 5. Results and analysis 66

Table 5.5 – Continued from previous page

Author
(year)

Pertinence Focus Research Type Contribution Type Ref.

Häsel
(2010)

Marginal Managerial & organiza-
tional

Evaluation Research Model [158]

Hanna
(2010)

Marginal Managerial & organiza-
tional

Evaluation Research Model [94]

Deakins
(2005)

Partial Managerial & organiza-
tional

Experience Paper Model [89]

Camel
(1994)

Full Software Development Evaluation Research Lesson Learned [70]

Silva
(2005)

Full Software Development Evaluation Research Lesson Learned [79]

Midler
(2008)

Partial Managerial & organiza-
tional

Evaluation Research Framework & Meth-
ods

[86]

Taipale
(2010)

Full Software Development Experience Paper Advice & Implica-
tions

[84]

Chorev
(2006)

Marginal Managerial & organiza-
tional

Evaluation Research Model [34]

Zettel
(2001)

Full Software Development Solution Proposal Framework & Meth-
ods

[88]

Jansen
(2008)

Partial Software Development Evaluation Research Lesson Learned [95]

Sutton
(2000)

Full Process Management Opinion Paper Advice & Implica-
tions

[13]

Heitlager
(2007)

Full Process Management Solution Proposal Tool [3]

Tingling
(2007)

Full Software Development Evaluation Research Advice & Implica-
tions

[77]

Deias
(2002)

Full Software Development Experience Paper Advice & Implica-
tions

[80]

Stanfill
(2007)

Marginal Managerial & organiza-
tional

Solution Proposal Advice & Implica-
tions

[159]

Wood
(2005)

Partial Software Development Experience Paper Advice & Implica-
tions

[160]

Steenhuis
(2008)

Marginal Managerial & organiza-
tional

Evaluation Research Lesson Learned [161]

Yogendra
(2002)

Partial Managerial & organiza-
tional

Evaluation Research Guidelines [87]

Ambler
(2002)

Full Software Development Experience Paper Lesson Learned [76]

Crowne
(2002)

Full Software Development Solution Proposal Advice & Implica-
tions

[10]

Mater
(2000)

Partial Managerial & organiza-
tional

Evaluation Research Model [91]

Kakati
(2003)

Marginal Managerial & organiza-
tional

Evaluation Research Model [35]

Kuvinka
(2011)

Partial Software Development Experience Paper Advice & Implica-
tions

[85]

Su-
Chuang
(2007)

Marginal Software Development Evaluation Research Advice & Implica-
tions

[162]

Sau-
ling Lai
(2010)

Marginal Managerial & organiza-
tional

Evaluation Research Lesson Learned [163]

Mirel
(2000)

Partial Managerial & organiza-
tional

Solution Proposal Advice & Implica-
tions

[92]

Himola
(2003)

Marginal Managerial & organiza-
tional

Solution Proposal Advice & Implica-
tions

[68]

Kim
(2005)

Marginal Managerial & organiza-
tional

Evaluation Research Model [93]

Wall
(2001)

Partial Software Development Experience Paper Advice & Implica-
tions

[96]

Table 5.5 – Continued on next page



www.manaraa.com

Chapter 5. Results and analysis 67

Table 5.5 – Continued from previous page

Author
(year)

Pertinence Focus Research Type Contribution Type Ref.

Yo�e
(1999)

Marginal Managerial & organiza-
tional

Evaluation Research Guidelines [81]

Bean
(2005)

Marginal Tools and technology Philosophical Paper Advice & Implica-
tions

[97]

Tanabian
(2005)

Marginal Managerial & organiza-
tional

Opinion Paper Advice & Implica-
tions

[33]

Fayad
(1997)

Marginal Process Management Philosophical Paper Advice & Implica-
tions

[90]

Table 5.5: Systematic map overview

The above table quickly reveals the nature of the study conducted, the extent
of pertinence with the research problem, the type of contribution produced and
the major research area investigated. Although the table is complete and contains
the entire classification schema, it is still hard to extract relevant information from
it. For this reason we computed the frequency of publications in each category
using an electronic spreadsheet. In this way it is easier to emphasize what has
been achieved in the past by researchers in the area, identifying gaps to drive
the direction of our grounded theory case study, and suggesting possible future
researches.

As suggested by Peterson et al. [1], to provide a good overview on how
the topic is structured, we present our systematic map using multi-dimensional
bubble charts (“x-y scatter plots with bubbles in categories intersections”) where
the size of the bubble is determined by the number of publications corresponding
to the x-y coordinates. Di↵erently from other similar studies [164, 109], in our
classification schema each data point is represented by four features. Thus, we
created three plots to visualize all the six possible combinations of facets, giving
a complete overview of the systematic map.

The charts depicting the systematic map are presented in figures 5.3, 5.4 and
5.5. They have been obtained by joining together multiple facets in di↵erent
quadrants to allow the reader to consider di↵erent dimensions simultaneously.
Finally we added some statistical data on the chart for individual dimensions.

For example, the big bubble in the top-left part of Figure 5.3 indicates that
11 studies (29.73% of the total) are focused on managerial and organizational
factors and conducted through an evaluation research. Simultaneously in the
same figure is possible to observe, for instance, how 7 items with managerial
and organizational focus contributed to the body of knowledge with a model.
However, by looking at Figure 5.4, one can quickly notice that 5 out of the total
9 models have only a marginal pertinence with engineering activities in software
startups.



www.manaraa.com

Chapter 5. Results and analysis 68

Figure 5.3: Systematic map - Focus, contribution and research type

Figure 5.4: Systematic map - Contribution, pertinence and research type



www.manaraa.com

Chapter 5. Results and analysis 69

Figure 5.5: Systematic map - Pertinence, focus and research type

By analyzing in depth the three bubble charts representing the systematic
map of the selected studies, we report a list of most significant observations:

• First of all, by looking at the pertinence facet we can observe that only 14
papers (37.84%) are entirely dedicated to software development in startups,
and 9 of those produced a weak contribution (advice and implications (5);
lesson learned (3); tool (1)).

• Observing the focus facet, it is easy to see how 16 articles (43.24%) are
focused on Managerial and organizational factors, which are only relatively
interesting under a SE perspective. In fact, none of those 16 articles have
a full pertinence.

• The overall contribution types produced by the studies are for the greater
part weak (24 items, 64.86%). Of the 13 remaining studies (35.13%), which
produces a strong contribution type, only 4 have the focus on what is con-
sidered fundamental for our research problem (software development and
process management).

• A good portion of the selected studies were carried out using an evaluation
research (20 items, 54.05%) which is the only research type which involves
a field study. However, by simultaneously looking at other facets, we can
observe how 11 of these evaluation researches are related to managerial and
organizational factors , and only 7 out of 20 have a full pertinence with
engineering activities in software startups. On the other hand the contribu-
tion types, produced by evaluation researches, are widely distributed on the
map, whilst other - less empirical - research types generally brought only to
weak contribution types.

• 14 out of 20 studies, with focus on process management (7) and software
development (13), have a full pertinence with our research area.

So, if we don’t consider items which produced a poor contribution type, items



www.manaraa.com

Chapter 5. Results and analysis 70

which do not have full pertinence with software development in startups and items
with a non-empirical research approach, only four studies remain ([27, 29, 2, 18]),
and represent the most prominent contribution to the field. In the remains of
this document and in Related Work (Section 3), the content of these four article
is discussed in detail.

Summarizing the implications regarding the RQ-1.1 (How is the body of knowl-
edge distributed in literature? ) we have found that:

• The literature lacks of relevant primary studies which investigate engineer-
ing activities in software startups. The 37 selected studies are researches
spread across di↵erent scientific areas and journals. In addition, they are
weakly interrelated by mutual references. This confirms what was partially
revealed by the first non-systematic literature survey and, at the same time,
discloses a complex underlying field.

• About 80% of the studies have been published in the last decade, opening
a set of new issues brought by the advent of internet and mobile devices
which enabled fast and wide proliferation of software startups. The state-of-
the-art under a SE perspective is quite recent, especially when compared to
siblings areas such as SE in small companies, which is much more advanced
in terms of number of primary studies and provided evidences.

• The selected studies focus on a wide variety of topics of which we pro-
vided a complete overview. Despite more attention is given to some sort of
lightweight methodologies for startups and some discussion about process
formation and improvement, the evidence produced are definitely under-
sized to support the dimension of the actual startup phenomenon.

• To asses the detailed distribution of the body of knowledge we mapped the
identified studies into a classification schema which considers four dimen-
sions, namely: research type, contribution type, main focus and pertinence.
Of a total of 37 selected studies, 16 of them (43.24%) are focused on man-
agerial and organizational factors, which are only partially interesting under
a SE perspective. Additionally, only 14 studies (37.84%) are entirely ded-
icated to software development in startups and 9 of those produced weak
contribution types.

• Overall, we identified only 4 important contributions to the field that are
published in scientific journals, are entirely dedicated to engineering activi-
ties in startups, provide strong contribution type and are conducted through
an evidence-based research approach [27, 29, 2, 18]. Three of these studies
are from the same author, Gerry Coleman.



www.manaraa.com

Chapter 5. Results and analysis 71

5.1.2 Rigor and relevance

Figure 5.6 shows a pie chart representing the distribution of the relevant sample
in the three venue categories.

Figure 5.6: Publication distribution - Venue

Despite the scientific validity of a study cannot be a mere consequence of
the venue where it has been published, the peer-review process, required for
publishing a journal article, is generally much more rigorous and formal than the
procedure to get an article published on a scientific magazine or accepted to a
conference [103]. As can be seen in Figure 5.6, only 17 publications (44%) in
the sample are journal articles, while the remaining 56% consist of conference
proceedings and magazine articles. Although this feature alone is not enough
to represent a direct implication on the quality3, it can be interpreted as a first
indicator of the scientific quality of the sample, formally assessed with the rigor
and relevance process here discussed.

Following the process described in Subsection 4.2.6, we assessed the rigor and
relevance of each paper by summing up the contribution of individual aspects
defined in the evaluation model [121]. The detailed results of this process are
shown in Table 5.6. Observe that the maximum possible value for rigor (Ri =
Ri1 + Ri2 + Ri3) is 3, and for relevance (Re = Re1 + Re2 + Re3) is 4 (see the
detailed quantification Table 4.4).

First author (year) Ri1 Ri2 Ri3 Ri Re1 Re2 Re3 Re4 Re Ref.
Coleman (2007) 1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 4.0 [2]
Coleman (2008) 1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 4.0 [29]
Coleman (2008) 1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 4.0 [27]
Camel (1994) 0.5 1.0 1.0 2.5 1.0 1.0 1.0 1.0 4.0 [70]

Table 5.6 – Continued on next page

3The publication criteria are determined by the specific editor of the journal/magazine or
the committee of a conference. There is a vast multitude of excellent quality studies presented
in conference proceedings and magazines, and many example of poor-quality journal articles.



www.manaraa.com

Chapter 5. Results and analysis 72

Table 5.6 – Continued from previous page

First author (year) Ri1 Ri2 Ri3 Ri Re1 Re2 Re3 Re4 Re Ref.
Häsel (2010) 0.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 4.0 [158]
Hanna (2010) 0.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 4.0 [94]
Deakins(2005) 1.0 0.5 1.0 2.5 1.0 1.0 0.0 1.0 3.0 [89]
Chorev (2006) 1.0 1.0 0.0 2.0 1.0 1.0 0.0 1.0 3.0 [34]
Kajko (2008) 1.0 0.5 0.0 1.5 1.0 1.0 0.0 1.0 3.0 [18]
Jansen (2008) 0.5 0.0 0.5 1.0 1.0 1.0 0.0 1.0 3.0 [95]
Midler (2008) 0.5 0.5 0.0 1.0 1.0 1.0 0.0 1.0 3.0 [86]
Steenhuis (2008) 0.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 3.0 [161]
Yogendra (2002) 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 3.0 [87]
Wood (2005) 0.0 0.5 0.0 0.5 1.0 1.0 0.0 1.0 3.0 [160]
Tingling (2007) 0.0 0.5 0.0 0.5 1.0 1.0 0.0 1.0 3.0 [77]
Su-Chuang (2007) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 3.0 [162]
Sutton (2000) 1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 2.0 [13]
Kakati (2003) 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 2.0 [35]
Mater (2000) 0.5 0.0 0.0 0.5 1.0 1.0 0.0 0.0 2.0 [91]
Yo�e (1999) 0.5 0.0 0.0 0.5 1.0 1.0 0.0 0.0 2.0 [81]
Deias (2002) 0.5 0.0 0.0 0.5 1.0 1.0 0.0 0.0 2.0 [80]
Silva (2005) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 2.0 [79]
Wall (2001) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 2.0 [96]
Kuvinka (2011) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 2.0 [85]
Mirel (2000) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 2.0 [92]
Zettel (2001) 0.5 0.0 0.5 1.0 1.0 0.0 0.0 0.0 1.0 [88]
Ambler (2002) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 2.0 [76]
Stanfill (2007) 0.5 0.5 0.0 1.0 0.0 1.0 0.0 0.0 1.0 [159]
Taipale (2010) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 2.0 [84]
Sau-ling Lai (2010) 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 2.0 [163]
Kim (2005) 0.5 0.0 1.0 1.5 0.0 0.0 0.0 0.0 0.0 [93]
Crowne (2002) 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 [10]
Heitlager (2007) 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 [3]
Himola (2003) 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 [68]
Bean (2005) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 [97]
Fayad (1997) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 [90]
Tanabian (2005) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 [33]

Table 5.6: Mapping Study - Rigor-relevance results

The table is sorted by placing at the top the studies, which received the highest
scores in the two dimensions summed together. It is straightforward to observe
that Coleman’s studies received the maximum score for both scientific rigor and
industrial relevance. By contrast, there are many papers which report a 0 score
(11 zeros for rigor, 7 zeros for relevance), providing a first confirmation of what
was only a suspect about the generally low reliability of a good part of these
studies.

To further extract useful insight, it is more convenient to adopt a graphical
representation of the rigor and relevance. We use the same approach previously
utilized to depict the systematic map: a bubble chart where the bubble size is
proportional to the number of publications, corresponding to the coordinates x-y,
along with some statistical data shown for each dimension (Figure 5.7).



www.manaraa.com

Chapter 5. Results and analysis 73

Figure 5.7: Rigor-relevance overview

If we don’t consider studies in the highest region of scores (see the top-right
part of Figure 5.7) for industrial rigor (� 2) and relevance (� 3) from the rest, it
is easy to observe how the greater part of the selected studies (78.38%) received
mediocre scientific rigor and industrial relevance scores. Only 8 items belong to
the high-score region.

Moreover, the biggest bubble in the chart shows 7 studies (almost 19% of the
total) which received an average score for industrial relevance (2) but only a 0 for
the scientific rigor. This kind of studies, according to the authors of the rigor-
relevance model [121], presents a major issue: although their findings appear to
be somewhat appealing for practitioners (average relevance), the extremely poor
scientific rigor of the study will make a possible knowledge transfer to the industry
highly unlikely or highly dangerous. Indeed Kitchenham states that one of the
most important factors for having academic results applied in the industry is by
providing proper scientific evidences of the implications [106, 107].

Finally, by looking at how bubbles are distributed on the chart (see Figure 5.7)
with no need of sophisticated statistical methods, it is clear the relation between
items which received the highest scores for rigor and the ones which received the
highest score for relevance. Since the two dimensions represent two independent
variables the result is not straightforward. In this particular sample, it indicates
that results of studies, which have been rigorously reported, are generally more
relevant for the industry (and vice-versa). By thoroughly analyzing the studies
in the high rigor-relevance region, we observed that the authors have strong aca-
demic backgrounds but at the same time they have worked for many years in



www.manaraa.com

Chapter 5. Results and analysis 74

direct contact with startups. This is even more visible when comparing them to
the other authors in the sample with lower value of rigor and relevance4. This
could somehow explain the reason why, in our sample, the rigorous studies are
also highly relevant.

Summarizing the implications regarding the RQ-1.2 (What is the industrial
relevance and scientific rigor of the published studies? ) we have found that:

• Only 17 publications (44%) in the sample are journal articles. The remain-
ing 56% consists of conference proceedings and magazine articles, which
usually require a less rigorous peer-review process than a scientific journal
publication.

• By assessing the rigor and relevance of the selected studies with a systematic
procedure we attested that the majority of works are poorly relevant for
startups and are presented with low scientific rigor. By looking at the
detailed rigor-relevance chart, it can be observed how most of the studies
are located in the lower region of the rigor-relevance map. Additionally,
eleven articles received 0 for scientific rigor, and seven articles received 0
for rigor.

• Coleman’s studies [27, 29, 2], which appears to be a prominent researcher
in this area, received also the highest score both for scientific rigor and
industrial relevance. This provided to our research a solid starting point.
In fact, these references are used a considerable amount of times throughout
the thesis document.

• Seven studies, which received an average score for industrial relevance, were
marked with 0 for the scientific rigor. Thus, although their results could
be potentially relevant (2) for the industry, the low rigor makes a possible
adoption in startups highly-risky or highly-unlikely. These studies represent
almost 19% of the total.

• The most rigorous studies in our sample are highly relevant for practitioners,
and vice-versa. We observed that in those cases, the authors are academics
with a deep connections with the industry or direct experiences in startups.

5.1.3 Contextual features of startups

In this part we present the results of the data extraction process described in
Subsection 4.2.5, where we identified peculiar characteristics of startup companies
as described in the literature. The results confirms that there is no agreement on
a standard definition which specify what exactly a startup is. Di↵erent authors
provide di↵erent definitions and they use the term startup referring to context
which are often quite di↵erent. This makes any attempt to identify a solid and

4Since it is not possible to obtain a complete background study of each author, we based
our assumption on a small biographic review.



www.manaraa.com

Chapter 5. Results and analysis 75

coherent body of knowledge very challenging.
Defining what makes a software startup unique is an interesting problem:

apparently is not strictly related to the size of the company. For instance, some
authors call “startups”, companies with 6 employees [92], whilst others refer to
startups with more than 300 employees [81, 27]. It is not about the age of the
company either: some authors studied startups which have been operating for
many years [163], while others are more strict about companies recently founded
[18]. For other authors start-up is a phase, and it is not clear where to draw
the line anyway. Others claim that startups works on innovative products, but
they don’t give the exact definition of innovation, which makes this factor a little
confusing (a recent systematic study identified “41 definitions of innovation in
204 selected primary SE studies” [64]).

To illustrate how authors use the term software startup, we systematically
extracted themes which characterize companies inquired in the selected relevant
studies. We were able to identify 15 main themes which are reported in Table
5.7. The last two columns on the right side indicate respectively the frequency of
occurrence of a specific theme and its references.

ID Theme Description Frequency Ref.

T.1 Lack of resources Economical, human, and physical resources
are extremely limited.

13 [87], [81], [10],
[18], [70], [29],
[2], [27], [94],
[13], [76], [159],
[33]

T.2 New company The company has been recently created. 4 [10], [81], [70],
[34]

T.3 Small Team Startups starts with a small numbers of indi-
viduals.

7 [88], [81], [10],
[18], [13], [34],
[33]

T.4 Uncertainty Startups deal with a highly uncertain ecosys-
tem under di↵erent perspectives: mar-
ket,product features, competition, people and
finance

8 [3], [93], [29],
[2], [27], [90],
[86], [33], [68]

T.5 Little working his-
tory

The basis of an organizational culture are not
present initially.

2 [81], [76]

T.6 Higly Risky Failure rate of startups is extremely high. 4 [3], [18], [70],
[33]

T.7 Not self-sustained Especially in the early stage startups need ex-
ternal funding to sustain their activities (Ven-
ture Capitalisst, Angel Investments, Personal
Funds, ...)

2 [88], [94]

T.8 Low-experienced
team

A good part of the development team is
formed by people with less than 5 years of
experience and often recently graduated stu-
dents.

5 [70], [29], [2],
[76], [35]

T.9 Flat organization Startups are usually founders-centric and ev-
eryone in the company has big responsabili-
ties. No high-management.

4 [81], [18], [79],
[33]

T.10 One product Company’s activities gravitate around one
product/service only.

7 [76], [85], [97],
[80], [79], [27],
[84]

Table 5.7 – Continued on next page



www.manaraa.com

Chapter 5. Results and analysis 76

Table 5.7 – Continued from previous page

ID Theme Description Frequency Ref.

T.11 Innovation Given the highly competitive ecosystem, star-
tups need to focus on highly innovative seg-
ments of the market.

11 [3], [87], [92],
[161], [95],
[163], [13],
[158], [158],
[86], [35]

T.12 Time-pressure The environment often forces startups to re-
lease fast and to work under constant pres-
sure ( terms sheets, demo days, investors’ re-
quests )

8 [88], [70], [27],
[77], [13], [89],
[68], [91]

T.13 Highly Reactive Startups are able to quickly react to changes
of the underlying market, technologies, and
product. (compared to more established
companies )

11 [88], [18], [70],
[29], [27], [77],
[13], [90], [76],
[85], [80], [79]

T.14 Third party depen-
dency

Due to lack of resources,to build their prod-
uct startups heavily rely on external solu-
tions: External APIs,Open Source Software,
outsourcing, COTS, ...

7 [81], [160], [96],
[95], [163], [94],
[13], [76]

T.15 Rapidly Evolving Successful startups aim to grow and scale
rapidly.

8 [87], [81], [70],
[27], [162], [13],
[76], [85], [89]

Table 5.7: Mapping Study - Recurrent themes

When discussing software startups, thirteen authors reported a general lack of
human, physical and economical resources (T.1). For this reason, startups deeply
depend upon external software solutions such as third party APIs, COTS and
OSS (T.14). Other studies refer to companies which are able to quickly react
to changes in the market and technologies (T.13), under remarkably uncertain
conditions (T.4). Some authors indicate that these companies are focused on
highly innovative segments of the market (T.11), generally working on a single
core-product (T.10) under extremely high time-pressure (T.12). Furthermore,
eight authors write about startups as fast growing companies (T.15) designed to
rapidly scale-up. Other researches mention a very small founding team (T.3),
which is often composed by low-experienced people (T.8) with a very flat or-
ganization structure (T.9) where the CEO is sometimes a core developer itself.
Finally, other studies agree on the highly risky nature of these businesses (T.13)
newly created (T.2) and therefore with no or little working history (T.5).

It is important to understand that the above mentioned contextual factors
have a relevant impact on software development activities5, making them di↵er-
ent from established companies [13]. And since there is no common agreement
on the use of the term startup and its implications, it should be an important
responsibility of the authors to specify which kind of companies the study actu-
ally refers to, in order to avoid misleading and ambiguous results. In the selected
studies, most of the authors used the term startup without explicitly mentioning
what exactly they meant.

5To further attest the validity our theoretical model, in Section 6.6 we use the above men-
tioned themes to execute a comparative analysis with the theoretical framework we developed
with the grounded theory case study.



www.manaraa.com

Chapter 5. Results and analysis 77

For this reason in Chapter 2, we specified that our case study and consequently
the results of the grounded theory regard to newly created and product-centered
companies, in the time-frame that goes from the idea conception to the release of
the first product in highly scalable markets (this formulation was initially shaped
around the definitions used in [59, 7, 22]). We finally dedicated a subsection to
discuss the generalizability of results to similar domains (see Section 6.7).

Summarizing the implications regarding the RQ-1.3 (What are the features
which characterize the context of software development in startups, reported in
literature? ) we have found that:

• Di↵erent authors use the word startup actually referring to di↵erent kind
of companies. It is very hard to identify an explicit definition of the con-
text in which the companies operate, often given for granted. Under these
conditions, trying to identify a coherent body of knowledge is even more
challenging and is even harder for practitioners to somewhat adopt the re-
sults without having a proper context. For instance, some results about
“startups” have been obtained by studying companies with more than 200
employees and others from companies with 6 employees. To make an exam-
ple, from a SE engineering point of view, the size of the company actually
have several implications on the software development activities [165].

• To capture the implicit contextual features that authors used when refer-
ring to software startup companies we identified a set of 15 main themes
and counted their frequency in the selected studies. The most frequent re-
ported themes concern the general lack of resources, highly reactiveness and
flexibility, intense time-pressure, uncertain conditions and fast growth.

• Since the contextual boundaries of startups resulted to be highly blurred,
it is responsibility of the researchers who refer to “startups” to explicitly
mention which are the features of the company that the study is actually
concerned with (in most of selected studies an explicit contextualization has
been neglected). For this reason we explicitly declared the area of interest
of our case study in Introduction (see Chapter 1).

5.1.4 State-of-the-art: summary (RQ-1)

In this subsection we provide the overall answer to the RQ-1: What is the cur-
rent state-of-the-art in the SE literature pertaining to engineering activities in
startups?.

To emphasize the importance of articles, which brought prominent contri-
butions to the area under investigation, we followed the procedure described in
Subsection 4.2.7, computing a score (in the range [0�10]) for each selected study.
Table 5.8 lists the dimensions which were used to assign the final score, next to
the arbitrary weight to balance the ranking criteria.



www.manaraa.com

Chapter 5. Results and analysis 78

W Dimension (id) Weight

w1 Pertinence (P) .25

w2 Rigor (Ri) .175

w3 Relevance (Re) .175

w4 Age (A) .15

w5 Venue (V) .1

w6 Contribution (C) .05

w7 Research type (R) .05

w8 Focus (F) .05

TOTAL: 1

Table 5.8: Ranking weights

The most important dimension, counting for the 25% alone, is Pertinence,
followed by rigor and relevance, respectively counting 17.5% each. The remaining
dimensions are increasingly less important to the final score, which is computed
for each paper i by adding up the contributions as shown in the formula below.

Scorei = (w1 · Pi) + (w2 ·Rii) + (w3 ·Rei) + (w4 ·Ai) + (w5 · Vi) + (w6 · Ci) + (w7 ·Ri) + (w8 · Fi)

The final score is presented in Table 5.9. The dimensions, which contributed
to the final score, are the columns representing: (A)ge, (Ri)gor, (Re)levance,
(V)enue, (P)ertinence, (C)ontribution type, (R)esearch type and (F)ocus.

First author (year) Score A Ri Re V P C R F Ref.
Coleman (2008) 9.70 1.20 1.75 1.75 1.00 2.50 0.50 0.50 0.50 [27]
Coleman (2007) 9.70 1.20 1.75 1.75 1.00 2.50 0.50 0.50 0.50 [2]
Coleman (2008) 9.70 1.20 1.75 1.75 1.00 2.50 0.50 0.50 0.50 [29]
Kajko (2008) 8.09 1.20 0.88 1.31 0.70 2.50 0.50 0.50 0.50 [18]
Häsel (2010) 7.47 1.50 1.17 1.75 1.00 0.75 0.50 0.50 0.30 [158]
Hanna (2010) 7.47 1.50 1.17 1.75 1.00 0.75 0.50 0.50 0.30 [94]
Deakins(2005) 6.87 0.90 1.46 1.31 1.00 1.25 0.50 0.15 0.30 [89]
Camel (1994) 6.61 0.15 1.46 1.75 0.70 1.25 0.30 0.50 0.50 [70]
Silva (2005) 6.58 0.90 0.00 0.88 1.00 2.50 0.30 0.50 0.50 [79]
Midler (2008) 6.55 1.20 0.58 1.31 1.00 1.25 0.40 0.50 0.30 [86]
Taipale (2010) 6.53 1.50 0.00 0.88 0.70 2.50 0.30 0.15 0.50 [84]
Chorev (2006) 6.43 0.90 1.17 1.31 1.00 0.75 0.50 0.50 0.30 [34]
Zettel (2001) 6.32 0.60 0.58 0.44 1.00 2.50 0.40 0.30 0.50 [88]
Jansen (2008) 6.25 1.20 0.58 1.31 0.60 1.25 0.30 0.50 0.50 [95]
Sutton (2000) 6.11 0.60 0.58 0.88 0.60 2.50 0.30 0.15 0.50 [13]
Heitlager (2007) 6.08 1.20 0.58 0.00 0.70 2.50 0.30 0.30 0.50 [3]
Tingling (2007) 5.99 1.20 0.29 0.00 0.70 2.50 0.30 0.50 0.50 [77]
Deias (2002) 5.92 0.60 0.29 0.88 0.70 2.50 0.30 0.15 0.50 [80]
Stanfill (2007) 5.74 1.20 0.88 1.31 0.70 0.75 0.30 0.30 0.30 [159]
Wood (2005) 5.70 0.90 0.29 1.31 1.00 1.25 0.30 0.15 0.50 [160]
Steenhuis (2008) 5.65 1.20 0.58 1.31 0.70 0.75 0.30 0.50 0.30 [161]
Yogendra (2002) 5.55 0.60 0.58 1.31 0.70 1.25 0.30 0.50 0.30 [87]
Ambler (2002) 5.53 0.60 0.00 0.88 0.60 2.50 0.30 0.15 0.50 [76]
Crowne (2002) 5.48 0.60 0.58 0.00 0.70 2.50 0.30 0.30 0.50 [10]
Mater (2000) 5.45 0.60 0.29 1.31 0.70 1.25 0.50 0.50 0.30 [91]
Kakati (2003) 5.41 0.90 0.58 0.88 1.00 0.75 0.50 0.50 0.30 [35]
Kuvinka (2011) 5.28 1.50 0.00 0.88 0.70 1.25 0.30 0.15 0.50 [85]
Su-Chuang (2007) 5.26 1.20 0.00 1.31 0.70 0.75 0.30 0.50 0.50 [162]
Sau-ling Lai (2010) 5.23 1.50 0.00 0.88 1.00 0.75 0.30 0.50 0.30 [163]
Mirel (2000) 4.98 0.60 0.35 0.88 1.00 1.25 0.30 0.30 0.30 [92]
Himola (2003) 4.57 0.90 0.58 0.44 1.00 0.75 0.30 0.30 0.30 [68]
Kim (2005) 4.53 0.90 0.88 0.00 0.70 0.75 0.50 0.50 0.30 [93]

Table 5.9 – Continued on next page



www.manaraa.com

Chapter 5. Results and analysis 79

Table 5.9 – Continued from previous page

First author (year) Score A Ri Re V P C R F Ref.
Wall (2001) 4.28 0.60 0.00 0.88 0.60 1.25 0.30 0.15 0.50 [96]
Yo�e (1999) 4.22 0.60 0.29 0.88 0.60 0.75 0.30 0.50 0.30 [81]
Bean (2005) 3.50 0.90 0.00 0.00 1.00 0.75 0.30 0.15 0.40 [97]
Tanabian (2005) 3.10 0.90 0.00 0.00 0.70 0.75 0.30 0.15 0.30 [33]
Fayad (1997) 2.45 0.15 0.00 0.00 0.60 0.75 0.30 0.15 0.50 [90]

Table 5.9: Mapping Study - Ranking of selected studies

It can be observed that the same 4 papers which occupy the first 4 positions of
the above presented ranking ([27, 29, 2, 18]), are in the most interesting regions of
the systematic maps described before, and at the same time are rated as highly
rigorous and relevant (Table 5.9). These studies are, in fact, the ones which
mostly guided and supported us in the research process. In particular Coleman’s
studies received the highest scores mainly because his works are actually focused
on software process in startups from a SE perspective, undertaking rigorous and
well documented approaches, and producing meaningful outcomes published on
relevant journals. However, we observed that the three publications are, in fact,
derived from the same study with 21 companies.

Although a little part of the companies inquired in his publications had an
extremely limited number of employees involved in software development, the
greatest part of them had more than 20 developers/engineers, making its results
hard to generalize to actual early-stage startups with 3 or 4 founding members.

The results of the systematic mapping of the literature, fostered our motiva-
tion in filling the gap by executing a case study on early-stage startups. Thus,
our case study is clearly distinct from what has already been investigated by
Coleman. In fact, the companies, which we inquired in the interviews at the time
of the first release, employed an average number of about 8 employees, contrary
to Colman’s companies which employed up to 190 employees.

Moreover, as Coleman himself admits, his results su↵er from a limitation which
is not present in our study due to the fact that his respondents were covering high-
managerial roles (Managers/CTOs/Head of development) which are in practice
“one or more steps removed” from actual carrying out of the software development
[2]. Therefore their opinions are strongly biased towards methodologies they are
themselves proposing to their teams. By contrast, in the early stage of the studied
startups, the totality of our respondents were directly involved within all the
activities of software development, giving to us the possibility to actually attest
more reliable data6.

Finally, we summarize what are the results of the overall systematic mapping,
conducted through: creation of a classification schema which was used to map
the existing literature; a systematic assessment of the rigor and relevance of the

6As remarked by Coleman, interviewing engineers in mature companies can be misleading
to understand the higher-level dynamics, as they might not be aware of all process issues. By
contrast, in our research, respondents have been wearing multiple hats during the first stages,
acting as managers and engineers at the same time.



www.manaraa.com

Chapter 5. Results and analysis 80

selected studies; and finally identifying contextual features which characterize
software startups. The overall results of the analysis are summarized as follows
(answering RQ-1):

• The evidences provided by the 37 selected studies are, for the most part,
inadequate to understand the underlying phenomenon of software develop-
ment in startups. To the current date, twelve years after Sutton assessed
that startups have been neglected from process studies [13], the gap has
been only partially filled.

• From the provided systematic map, it can be observed that only 13 studies
out of 37 selected, are entirely dedicated to the study of software develop-
ment in startups. The remaining articles are only partially or marginally
mentioning relevant contributions to the area. Additionally, by visualizing
the four dimensions of the systematic map with the technique proposed by
Petersen et al. [1], we were able to provide detailed insights by simultane-
ously analyzing multiple facets of the literature distribution.

• The creation of a coherent body of knowledge about software startups is
restrained by the fact that di↵erent authors use the word startup in dif-
ferent contexts (above summarized by showing the more cited contextual
themes). Some authors use the word startup for small new companies while
others considered startups companies with hundreds of employees. Others
refer to innovative companies or operating in uncertain markets, and for
others, startup is the name of a phase in a software project. Given this
lack of consensus and consistency, when investigating software startups, it
is responsibility of the researcher to make explicit mention to the particular
context a↵ected by the study. In the selected studies an explicit mention
was often neglected, a↵ecting the generalizability of results.

• The results of selected studies are mediocrely relevant for the industry. Fur-
thermore, considering the general lack of high scientific rigor, it will be very
unlikely that the findings can have a real impact on startup companies.
Since transferring the knowledge to the companies should be one of the
most important concern of SE research [121], the next generation of studies
should provide more relevant and scientifically rigorous evidences. However,
in our sample, we identified a small portion of studies with both very high
relevance and very high rigor. We observed that the authors of those pa-
pers have generally academic background with strong connections or past
experiences with startup companies. This might infer that the combination
of excellent academics skills (providing rigor) with practical experience in
the field (providing relevance) fosters the quality of a startup-related study.

• We identified only four prominent contributions to the field by ranking
the studies according to a defined score, considering di↵erent features of
the study. Furthermore we realized that three of these studies, conducted
from the same author, are based on the same empirical data collected in 21



www.manaraa.com

Chapter 5. Results and analysis 81

companies with di↵erent profiles.
• Some of the features, which characterize startups, are common to other SE
domains (innovation, market-driven development, small companies, short
time-to-market, . . . ). However, the unique combination of elements, which
coexists in modern startup companies, poses a new series of issues which
need to be addressed with primary studies in the specific domain. A new
and consistent body of knowledge should support activities and decisions
of the fast growing number of startup companies, through evidence-based
research [106, 129]. The need of more studies is attested by the impress-
ing proliferation of (non-peer reviewed) books dedicated to startups, which
quickly became best-sellers (see Appendix A.2.5 for detailed books review).

• Finally, all of the above mentioned results fostered our motivation in pur-
suing research in this field. In particular, we observed that most studies
focused on mature startups and we couldn’t identify any relevant empiri-
cal evidences discussing engineering activities in the very early-stage of the
startup creation. This factor contributed in driving the direction of our case
study towards a cross-sectional analysis in the time frame that goes from
the idea conception to the first release of the product.

5.2 Case study

In this section we present and discuss the initial outcomes of the case study con-
ducted through semi-structured interviews and follow-up questionnaires. Since
the research process followed a grounded theory approach, the results outlined
in this section underwent a further process of analysis which converged in the
creation of a theoretical model, which is fully presented and discussed in the next
chapter (see Chapter 6) where the RQs are answered.

In the following part of this section we: discuss the sample of companies
involved in the study (Subsection 5.2.1); provide an overview of the coding process
(Subsection 5.2.2); display the results of the questionnaires (Subsection 5.2.3);
and finally execute a comparison of adopted methodologies between interviews
and questionnaires (Subsection 5.2.4).

5.2.1 Companies distribution

To understand how the population of 13 companies, which participated to the
case study is structured, we show in Figure 5.8 the distribution of the sample in
terms of product type, business category, location and size.



www.manaraa.com

Chapter 5. Results and analysis 82

(a) Product type (b) Market category

(c) Company size (d) Company location

Figure 5.8: Sample companies distribution

The totality of the startups7 has at its core a web product (see Subfigure
5.8(a)): 4 of them with a mobile component and 1 with a desktop application.
By looking at the market category8 (see Subfigure 5.8(b)), the companies are
well distributed across di↵erent domains: 4 social, 3 mobile and the remaining 6
working in education, games, software, cloud, advertising and ecommerce. As can
be observed in Subfigure 5.8(c), all the companies are quite small: four startups
employ between 10 and 20 people (small), five of them between 5 and 9 people
(very small) and four between 2 and 4 people (extremely small). Furthermore the
sample is distributed across di↵erent geographic areas, worldwide (see Subfigure
5.8(d)). Thus, the sample considered here is composed by small web-oriented
startups spread in di↵erent countries and market sectors.

Additional information about the companies were elicited during the inter-

7The companies are listed in Subsection 4.3.2.
8The business category has been assigned according to the profile of the company on Crunch-

Base [166].



www.manaraa.com

Chapter 5. Results and analysis 83

views and reported in Table 5.10. The first column represent an identifier assigned
to each company, that is further used in Chapter 6.

ID Company age Founding Initial Current First product
(months) team developers employees building time

(months)
C1 11 4 2 11 6
C2 5 2 2 6 3
C3 18 4 4 4 6
C4 17 3 2 11 6
C5 20 2 1 4 12
C6 30 3 2 4 1
C7 12 2 1 7 4
C8 24 4 3 16 4
C9 5 5 4 5 1
C10 43 6 4 9 4
C11 36 3 3 6 2
C12 12 3 3 3 3
C13 24 2 2 20 3

Table 5.10: Companies overview

As shown in column Company age, most of the companies were founded within
the last three years with only one exception (C10, which age was 3 years and 6
months). As can be observed by looking at the column Founding team, the
companies have been founded by an average number of 3 members, which in
majority are developers, as can be seen by looking at the column Initial develop-
ers. Moreover, the number of Current employees shows how, to di↵erent degrees,
companies expanded the initial teams, being able to bring the product to the mar-
ket in less than 6 months from the idea conception9 (see First product building
time). Summarizing the above identified features, the sample of the case study
is mainly composed by recently founded companies, working with web applica-
tions in di↵erent nations and market sectors, with very small development teams.
Moreover, the growing team size and and the publicly available data suggest an
healthy status of the businesses.

5.2.2 Coding process overview

By analyzing the interview transcripts with the process explained in Subsection
4.3.4 we extracted the information necessary to form the theoretical model pre-
sented in Chapter 6. The initial coding process (open and in-vivo) provided 630
unique codes, grounded to 1295 citations in the transcripts, divided according to
the thematic areas. Table 5.11 summarizes the distribution of unique codes and
the frequency in which they have been grounded into the data.

9C5 building time is extended to 1 year mainly because the product has been developed
part-time by one person only.



www.manaraa.com

Chapter 5. Results and analysis 84

Thematic Area Unique codes Grounded
Opening questions 11 83
Product discussion 120 242
Process discussion 169 332

Ideation and Requirements 63 122
Analysis 25 47

Design and architecture 49 99
Implementation 75 159

Verification and Validation 59 109
Deployment 13 36

Closing questions 46 66
Total 630 1295

Table 5.11: Number of codes

The thematic areas were divided according to the development phases de-
signed for the interview process. The complete list of raw codes is presented
in appendix A.4.3 and constitutes the empirical foundation of the theoretical
categories, which has been used to form the theoretical framework presented in
Chapter 6.

5.2.3 Follow-up questionnaires results

In this subsection we present the results obtained with the follow-up question-
naires, structured according to the design process discussed in Section 4.3.2. Two
weeks after the execution of the last interview we closed the surveys and col-
lected the data, obtaining a response rate approximated to 70% (9 companies
out of 13 completed it). When triangulating the data, we promptly observed
some inconsistencies between what has been said during interviews and what
has been answered in the questionnaires. Therefore, we asked to respondents
to clarify inconsistent results, validating that the answers provided during inter-
views were, in all instances, correct. In these cases we adjusted the survey result
consequently. To discuss this issue, in the last part of this chapter we compare
the two methodologies and discuss the reasons behind such inconsistencies (see
Subsection 5.2.4). However, for the sake of completeness and transparency we
decided to briefly show in this section results of the questionnaires. Therefore we
reduced the level of analysis performed on them. In fact, none of the conclusions
are drawn solely based on the questionnaire results in the generation of the theo-
retical categories, entirely based on the interviews. The questionnaire results are
used only as support material in the validation of the theory (see Section 6.6).



www.manaraa.com

Chapter 5. Results and analysis 85

Quality achievements

All the quality aspects discussed during interviews have been evaluated by the
respondents and presented10 in Table 5.12.

Company UX E�ciency Interoperability Portability Functionality Scalability

C1 5 3 2 – – –
C2 3 3 4 – – –
C3 3 3 – – – –
C4 N/A N/A N/A N/A N/A N/A
C5 5 – – 4 4 5
C6 4 – – – – –
C7 4 – – 3 3 –
C8 N/A N/A N/A N/A N/A N/A
C9 3 – – 5 5 –
C10 4 – 5 – – 4
C11 N/A N/A N/A N/A N/A N/A
C12 – 5 – 3 – -
C13 N/A N/A N/A N/A N/A N/A

Count 8 4 3 4 3 2

Average 3.88 3.50 3.67 3.75 4.00 4.50

1=Extremely poor; 2=Below average; 3= Average; 4=Above average; 5=Excellent;

Table 5.13: Qualities achievement

The Count row represents the number of those companies which have con-
sidered the specified quality attributes very important in their first release. It
can be observed how 8 out of 9 startups have considered aspects related to user
experience (UX) as very important. By looking at the Average values selected by
companies, it is possible to note how respondents declared to achieve their quality
aspect with an evaluation that is above the average of the presented cases.

E↵ort distribution

Table 5.14 shows how respondents declared to distribute the total e↵ort on the
di↵erent development phases involved in the creation of the first product.

10The hyphen indicates that the specific quality attribute was not an important concern
and therefore not included in the customized questionnaire while the companies that didn’t
submitted their response are crossed. Also note that the presented quality attributes initially
considered, were defined according to the ISO/IEC 9126, and subsequently adjusted according
to practitioners’ responses. This is the case of the user experience, which has not been defined
by the ISO/IEC 9126, but considered as the most important aspect to accomplish within the
studied startups.



www.manaraa.com

Chapter 5. Results and analysis 86

Company Requirements Analysis Design Implementation Testing Deployment

C1 10% 15% 5% 30% 30% 10%
C2 10% 10% 10% 30% 20% 20%
C3 15% 5% 10% 60% 8% 2%
C4 N/A N/A N/A N/A N/A N/A
C5 10% 10% 15% 45% 18% 2%
C6 10% 10% 30% 30% 10% 10%
C7 10% 5% 5% 50% 25% 5%
C8 N/A N/A N/A N/A N/A N/A
C9 20% 10% 20% 30% 10% 10%
C10 20% 10% 15% 35% 10% 10%
C11 N/A N/A N/A N/A N/A N/A
C12 15% 15% 20% 40% 8% 2%
C13 N/A N/A N/A N/A N/A N/A

Average 13% 10% 14% 39% 15% 8%

Table 5.14: Questionnaire results - E↵ort by phase

The average values across startups, which are displayed in Figure 5.9, show
how the majority of resources are, as expected, dedicated to implementation11.

Figure 5.9: Development e↵ort

Engineering elements fostering speed

As described in methodology (see Subsection 4.3.2) respondents assigned scores on
a five-steps rating scale evaluating those engineering elements which contributed
to foster time-to-market, as mentioned during the interviews. The results of the
repertory grid are summarized in Table 5.15, where elements (separated by semi-
colon) have been grouped according to the opinion expressed by respondents12 in
Extremely useful, Very useful, Somewhat useful, Little use and Useless.

11Due to identified inconsistencies (further discussed in Subsection 5.2.4), we do not speculate
much on this plot.

12Multiple recurrences (N) are indicated by X N.



www.manaraa.com

Chapter 5. Results and analysis 87

Time-to-market Engineering elements
contribution level
Extremely useful Amazon EC2; Analyzing competitors’ feedbacks; Basecamp’s tasklist; CEO solv-

ing conflicts in development decisions; Chef for deployment; Clean-code; Co-
located team members; Collecting feedback from pre-launch through landing
page; Competitor’s analysis; Consulting available libraries before start imple-
menting; Cross-functional team (full stack developers); Daily stand-ups; Dash-
board of the Content Manager; Database model; Deploy workflow ( feature
brench - pull req - Capistrano); Development experience; Early identification
of functional bugs with Unit tests; Feature meetings; Flat hierarchy of the team;
Get early feedback from customers; Git for code-base; Github for having re-
view of the code; Google analytics; Having senior developers; Heroku for deploy-
ment; High-experience developers; HTML5, CSS3; Hype of media for increasing
moral of developers; Illustrator for icons; Informal meetings for discussing biggest
changes only; Initial feature list (whiteboard); Initial survey to collect user feed-
backs; Integration tests (Selenium for browser tests); Mind mapping instead
of text writing communication; MySQL as DBMs; Only in-line comments to
document the code; Oral communication; Personal experience for story estima-
tion; Post-it notes for tracing tasks and bugs; Prototype an Hybrid Django/Php;
RESTful API; Scrum board (by means of whiteboard with post-it notes); Self-
imposed informal deadlines (Google spread-sheet); Skype for communication;
Using an MVP approach; Using whiteboard for main focus of the product/vi-
sion; Whiteboard for tracing the progress (modules implemented);

Very useful Analysis of critical/important use case scenarios; Assembla for managing ticket-
s/tasks; Automatic testing; Basecamp for bugs/issues; Break-down of big tasks
in smaller tasks; Build APIs to export functionalities to mobile; Class diagrams;
Continuos integration; Create ticket on-the-fly without any analysis and design;
Customer development and Lean startup methodology; Deployment on Amazon
infrastructure; Developer responsible for designing,coding and testing a feature.;
Developing the product without having schemas/diagrams; Dropbox for sharing
documents (x3); Electronic Kanban Wall for managing features (Agile Zen); Evo-
lutionary prototyping/MVP (X4); Focus Group for assessing graphical aesthetic;
Focus Group for setting the main functionalities; No need of formal analysis (
past experience ); Having Mentors in early stage; Hip-chat for internal communi-
cation; Initial architectural diagram (communication interfaces); Lack of a struc-
tured framework from the beginning; Lack of detailed documentation; Lack of
formal and automatic testing; List of features (paper notes); Mock-ups of the UI;
Naive diagrams (disposable) instead of UML communication diagrams; Postpone
potential choices which could ”limit”; Structure the app in a self-explanatory way
with Rails; Collecting initial feedbacks before coding; Separation of technical
from non-technical documents; Setting informal deadlines between co-founders;
Short release time (weekly deployment); Sketches (wireframe); Skype for assign-
ing bugs; Slides for the presentation of the product; Starting from a previously
developed technology; SVN for the codebase; Let user test secondary function-
ality; Treating bugs as user stories; Trying the product internally to identify
bugs/issues; Unit testing; Use Cases (Assembla); User feedbacks (by means of
the ”super circle” of users); UserVoice for collecting users’ feedback; Using a
Whiteboard; Using Linode to deploy the application;

Table 5.15 – Continued on next page



www.manaraa.com

Chapter 5. Results and analysis 88

Table 5.15 – Continued from previous page

Time-to-market Engineering elements
contribution level
Somewhat useful Analysis of competitors; Analyzing only parts of the system; Assembla for mea-

suring project progress; Co-located team; Communication diagram and Middle-
ware specification; Cucumber to test and document the code; Email for collecting
feedbacks; Emails for communication with developers; ER diagrams for model
data; Estimating task e↵ort; Feedback forum; Github for managing of the code-
base (X2); Github for assign bugs and stories; Google Documents to collect
customer-feedback; Having little/no documentation (X2); Lack of formalized de-
sign (X2); Having one-month milestones; In-line comments; Internal/in-house
testing; Lack of formal analysis of possibilities; Focusing only on implementation
(no management); Launch video; List of issues and bugs; List of user stories
on Trello; Mock-ups of the product UI; Not writing automatic tests for client-
side; Oral discussions with co-founders; Photoshop for web-design; Previous ex-
perience with Scrum; Prioritizing stories in three levels (urgent/to do/ideas);
Rails standards instead of formal documentation of the code; Scheduling mile-
stones/deadlines; Shared vision of the product; Show and tell meetings; Stand-up
meetings (every 2 days); Using Hackpad for features categories; Writing clean-
code; Wunderlist as tool for task management;

Little use Wanderlist; Uservoice for user feedbacks; Two-weeks sprints schedule; Timedoc-
tor; Test reports; Starting from a functioning prototype; Skype for communica-
tion; Ruby on Rails as web-framework; Ruby and Mongo as technologies; Refac-
toring the code base; Phpdoc; Oral discussion instead of formal design (X2); Not
having formal automatic testing (X2); Mysql Workbench for modeling db; Let
friends test the product before the release; Lack of measurements; Lack of in-line
comments in the code; In-line comments only for important/complex functions;
Having a free and elastic development process; Github logs for traceability of
stories; Github for managing issues and bugs; Github for deploy; Focus Group
for choosing the app name; Evernote; Emails for communication; Business Model
Canvas for brainstorming;

Useless Analyzing competitors’ projects; Not having formal automatic testing; Refactor-
ing the code base;

Table 5.15: Questionnaire results - Elements fostering time-to-market

The engineering elements specified by practitioners and reported in Table 5.15
are further used to validate the theoretical model (see Subsection 6.6.5).

Satisfaction

Answers to open questions have been used by researchers to analyze the interview
results and are not shown in this section. Answers related to the satisfaction level
with the undertaken development approach, all characterized by high values,
are presented in Table 5.16, confirming what has been vastly discussed in the
interviews.



www.manaraa.com

Chapter 5. Results and analysis 89

Company Satisfaction level

C1 Somewhat satisfied
C2 Extremely satisfied
C3 Somewhat satisfied
C4 N/A
C5 Very satisfied
C6 Very satisfied
C7 Very satisfied
C8 N/A
C9 Very satisfied
C10 Very satisfied
C11 N/A
C12 Somewhat satisfied
C13 N/A

Average 3.67

Table 5.16: Questionnaire results - Development approach satisfaction

5.2.4 Comparison of methodologies: interviews and ques-
tionnaires

As already mentioned in Subsection 5.2, in questionnaire results we observed
small inconsistencies between what some respondents declared in the interview
and the answers they gave in the survey. We contacted the respondents and made
a more in-depth comparison, and what we’ve found is that the questionnaires’
results were much more unreliable than the data obtained with the interviews.
However, we decided to display the raw data we obtained from questionnaires
(see Subsection 5.2.3) without drawing any important conclusion from the results
alone.

First of all, despite all the companies agreed beforehand to answer the follow-
up questionnaire and they have been solicited multiple times, yet we lack the
answer of 4 startups, which makes a more in depth comparative study unfeasible.
We usually sent to companies the survey within 24-hours from the interview
execution and we paid attention in using respondents own words and expression
to represent the concepts, always providing a free form option to answer the
question in case of doubt and lack of clearness.

Furthermore, for some answer which appeared inconsistent with interviews’
results, we contacted the respondents asking for clarification. What we found
is that the reason behind such inconsistencies is not the question’s formulation,
but mainly lack of time to answering them: entrepreneurs are constantly flooded
with surveys from market research and they are not much inclined to answer
them. Therefore, as explicitly declared by some of the respondents, they “didn’t
put much e↵ort” in the task as they don’t have time to dedicate to it. In fact,
when we asked the same inconsistent questions over the phone, responses were
consistent with the interviews.

Note that the degree of reliability varies among di↵erent responses we received:



www.manaraa.com

Chapter 5. Results and analysis 90

some of them are more adherent than others to what has been said during the in-
terview. For instance a respondent, who during the interview explicitly expressed
that they didn’t use any analysis procedure (paraphrasing, “we didn’t have any
analysis, formal or informal, we just jumped into the code after taking the ticket
from the whiteboard”), when asked to distribute 100 points of e↵ort among dif-
ferent phases in the online survey (see Subsection 5.2.3) he assigned 30 points
to analysis phase. He declared they spent 30% of their time and resources in
analysis, in contrast with what we discussed during the interview and with the
data triangulation (Q: “do you have any document or picture of the whiteboard
for the analysis?”, A: “no”). For similar cases, when the inconsistency was clear,
we asked for clarification and when possible adjusted the answer according to
what they actually meant.

Behind the limited time and attention whereby respondents answered the sur-
vey, another cognitive bias could have a↵ected them when answering questions.
When posed in front of an o�cial and formal questionnaire, respondents acknowl-
edged the fact that the result they were inserting would have been individually
evaluated, so they did their best to provide a good image of their company (social
desirability bias) and at the same time try to accommodate researchers expecta-
tions (response bias) [167]. On the other hand, during the interview the settings
were much more informal and colloquial, and respondent were free to talk and
express whatever they wanted to say without the pressure of being judged by two
young students.

Another lesson that we learned is that not only questionnaires but even semi-
structured interviews can be limiting instruments when exploring complex prob-
lems domain (confirming the arguments of Robson [103]). Following a script and
only asking predefined questions without adapting them to respondents’ answers
and further delve into the problem can severely a↵ect correctness and validity
results13. We experienced this issue during our interviews, in particular when
starting inquiring the development process with the question “Did you use any
specific development methodology?” (Q.3.1 in Table A.13). Indeed, 10 companies
out of 13 answered this question declaring that they used some sort of ad-hoc
lightweight version of Scrum or XP, when in fact, none of them applied any
development methodologies at all14. Although we observed this kind of incon-
sistency early during our preliminary interviews, we decided to keep asking the
same question throughout all interviews to be able to witness similar and compa-
rable behaviours. We believe that the repeated observations, made during online
in depth interviews, could hinder the validity of some software process studies,
especially those which investigated the adoption of development methodologies

13In our study this risk has been mitigated by the implicit use of the 5 whys technique [130].
14Throughout all the interviews we explored in depth, phase by phase, the development

activities. What we have found is that startups only adopt some rough high-level concept of
methodologies, without using any of the practices prescribed. Only a few exceptions can be
made for pair programming and test-driven development, yet seldom and never systematic.



www.manaraa.com

Chapter 5. Results and analysis 91

and conducted only by means of massive online questionnaires.
What we’ve learned from this result is that for understanding the true rea-

sons behind a complex phenomenon such as software development, an in depth
discussion is always needed to obtain the necessary full attention of the respon-
dents and dig into the underlying “whys”. This is especially true for startups
that work up to “16 hours per day” to put the product online as soon as possible
and do not have time for focusing on an online questionnaire, which they con-
stantly receive from di↵erent researchers and companies. Answers can hardly be
mere numbers: every issue involved is much more complex and deserves its own
in-depth discussion.

In the next chapter we present the theoretical model which emerged from the
systematic analysis of GT data.



www.manaraa.com

Chapter 6

Theoretical model

6.1 Introduction to the model

In this section we present a theoretical framework attempting to model and cap-
ture the underlying phenomenon of software development in early-stage startups.
The framework, here presented, is based on a systematic procedure (see Subsec-
tion 4.3.4) which is grounded into empirical concepts obtained by conduction of
the case-study. Starting from 630 raw codes extrapolated from the interview tran-
scripts1, the framework is formed by 128 sub-categories, clustered in 35 groups,
and finally in 7 categories at the highest level of abstraction.

By the means of a conceptual framework we want to provide explanations
of the development strategies and engineering activities undertaken by startups.
The knowledge, which we attempted to pack into a conceptual model, can be
used by researchers and practitioners to improve their understanding of the phe-
nomenon. Thus, the activities and the strategies undertaken during the early-
stage can be rationalized and designed acknowledging the surrounding contextual
elements.

The theory is presented in this section is the form of an experience map [27],
illustrating important challenges faced by practitioners in startups and fully an-
swering to the research questions related to the state-of-practice (RQ-2). In
particular, the answer to the sub-questions related to how startups consider qual-
ity attributes (RQ-2.2) is discussed in Subsection 6.3.4. The discussion on how
practitioners structure and execute the main engineering activities (sub-question
RQ-2.1) is spread across most of the subsections presenting and analyzing the
model, summarized in Implication (see Section 6.5).

The remains of this section is structured in six parts: the description of the
network formed by relations between the high-level categories (see Section 6.2),
followed by the detailed explanation of the theoretical framework (see Section 6.3)
and the generation of the theory (see Section 6.4). The implications of the model
and the answers to RQs are discussed in Section 6.5. In Section 6.6 we perform
a validation of the model by analysing it in comparison to: existing frameworks;

1The complete list of raw codes extracted from interview transcript is shown in Appendix
A.4.3.

92



www.manaraa.com

Chapter 6. Theoretical model 93

selected relevant studies; and empirical data. Finally in the last Section 6.7 of
this chapter, we discuss the generalizability of results to similar domains.

6.2 High-level framework

As mentioned above, the main concepts representing underlying phenomena have
been grouped together to form high-level categories. Figure 6.1 shows the network
of causal relationships (represented by arrows) between categories (represented
by blocks)2.

Figure 6.1: High-level theoretical framework

In the explanation of the framework in Figure 6.1, we emphasize labels of
theoretical categories using the italic font style. The network is centered around
the core category, speed-up development, which is the most interconnected node
in the framework reflecting the fact that “it is the one (category) with the greatest
explanatory power” [128]. The meaning of the labels on the three arrows that
reach the core category (e�ciency, e↵ectiveness and performance) is discussed
in detail in Subsection 6.6.4). The high-level framework, depicted in Figure 6.1
above, is presented starting from the left side block (severe lack of resources) and
concluding on the right side (initial growth hinders performance).

A contextual condition which characterizes, to some extent, each and every
startup, is the severe lack of resources. In fact, the capabilities of an early-stage

2Each node is linked to subsequent nodes which are called successors, and preceding nodes
which are called predecessors. The relations between them are denoted by the direction of the
interconnecting arrows. The network is read from left to right.



www.manaraa.com

Chapter 6. Theoretical model 94

startups’ to support its development activities are constrained by an extremely
limited access to human, time and intellectual resources, eventually leading to a
general absence of structures and processes.

The severe lack of resources forces the company to focus on implementing an
essential set of functionalities and it is one of the main reasons why the product
quality has low priority3 respect to other more urgent needs4. At the same time,
to be able to deal with such constraints, startups must depend on a small group
of capable and motivated individuals.

As it has been unanimously expressed by respondents, from a software per-
spective, the most urgent priority is to speed-up the development as much as
possible by adopting an extremely flexible and e↵ective evolutionary approach.
On the other hand the e�ciency of teamwork is facilitated by the low attention
initially given to architectural aspects related to product quality. This allows
startups to have a faulty but functioning product, which can quickly be intro-
duced to the market beginning with the in-house implementation of the prototype
from day-one.

The initial employees are the ingredients which enable high levels of perfor-
mances in software development. To support such a fast-paced production envi-
ronment, engineers are required to be highly committed, co-located, multi-role,
and self-organized. In other words team is the catalyst of development5. With an
essential and flexible workflow, which relies on tacit knowledge instead of formal
documentation, startups are able to achieve very short time-to-market. However,
each line of code, written without following structures and processes, contributes
to grow the accumulated technical debt6, which is further increased by having
almost non-existing specifications, a minimal project management and a severe
lack of automated tests.

Despite the fact that the consequences of such debt are not clearly perceived
in the initial stages (where finding the product/market fit as quickly as possible
is the most important priority), startups, which survive to subsequent phases,
will likely increment their user-base size, the product size, and the number of
developers. This will require the company to eventually pay the accumulated
technical debt, confronting the fact that an initial growth hinders productivity.

3To fully comprehend the actual phenomenon behind this theoretical category, it is highly
suggested to read the discussion of its subcategories in the detailed framework (see Subsection
6.3.4).

4There are some exceptions where the quality aspects actually matter and such cases will
be discussed later in Subsection 6.6.3.

5Observe in Figure 6.1 relationships between the core category and its three ancestors: the
team is the catalyst of development contributes to performance, product quality has low priority
contributes to e�ciency and Evolutionary approach to e↵ectiveness, as depicted in Figure 6.7
(see Subsection 6.6.4).

6As specified in Background (see Chapter 2) the term technical debt is “a neologistic
metaphor referring to the eventual consequences of poor or evolving software architecture and
software development within a codebase” [48].



www.manaraa.com

Chapter 6. Theoretical model 95

6.3 Detailed framework

Moving from the high-level of Figure 6.1 to the detailed framework, we can focus
on each group of subcategories describing the existing relationships as depicted
in Figure 6.2.

In the network we used small arrows between subcategories to represent a
strong causal relationship among them, where relationships were grounded di-
rectly in the interview transcripts. Specifically, small arrows represent a direct
correspondence of cause-e↵ect relation between subcategories, whilst the absence
of a small arrow indicates that the correspondence with other subcategories is
indirectly created through the relation between higher level categories (i.e. bold
arrows in Figure 6.2). In this regard, an example is the subcategory working
overtime to meet deadlines that doesn’t have a strong relation with any other
subcategories in CAT5: the relation exists only when it is wrapped into the con-
cept of CAT1. In fact, when it is combined with other subcategories through the
axial coding process, the subsequent process of selective coding creates an indirect
relation between the two high-level main categories (i.e. CAT1 ! CAT5)7.

In order to structure the description of the detailed framework, each category
is presented in a di↵erent subsection, which begins with the list of subcategories
belonging to it. To further support the description of the framework, we make use
of quotations extracted from transcripts, which refer to the interviewed company
along with their identifier8.

7Coding processes are explained in Subsection 4.3.4. For the sake of brevity in this chapter
we don’t describe all the small arrow relations. However, we made use of self-explanatory labels
to let the reader understand the causal relations only by reading the codes.

8Identifiers are assigned to companies in Table 5.10.



www.manaraa.com

Chapter 6. Theoretical model 96

Figure 6.2: Detailed theoretical framework



www.manaraa.com

Chapter 6. Theoretical model 97

6.3.1 Severe lack of resources (CAT7)

The first theoretical category and its subcategories are discussed in this subsec-
tion. The concept of severe lack of resources characterizes the uncertainty of
the development strategies in startups and it is composed by three subcategories:
time-shortage, limited human resources and limited access to expertise.

Subcategories:

• Time shortage:
– Investor(s) pressure.
– Business pressure.
– Internal final deadline.
– Demo presentations at events.

• Limited human resources.
• Limited access to expertise.

Since startups want to bring the product to market as quickly as possible, the
resource they are the most deprived of is the time. Startups operate under a con-
stant time pressure, mainly generated by external sources (investor(s) pressure,
business pressure) and sometimes internal necessities such as internal deadlines
and demo presentations at events. In this regard, C3 commented: “Investors
wanted to see product features, engineers wanted to make them better. Finally
the time-to-market was considered more important and the team interests was
somehow sacrificed.”

In addition, to compensate the limited human resources, practitioners need to
empower multi-role and full stack engineers, as confirmed by C1: “Everyone was
involved in any tasks, from mobile to web development, organizing themselves in
choosing the part to implement”.

The extent to which startups have access to specialized knowledge - both in-
ternal and external to the company - is extremely reduced when compared to
traditional established software companies. Therefore, in order to partially miti-
gate the limited access to expertise, startups rely on the external aid of mentors or
advisors. Under these strict limitations, most of the decisions related to software
development are fundamentally trade-o↵ situations (confirming Himola’s results
[68]).

6.3.2 Team is the catalyst of development (CAT4)

Among the di↵erent aspects fostering the speed of the development process, the
startups’ main focus is on the characteristics of the initial team. This category
comprehends the following subcategories:



www.manaraa.com

Chapter 6. Theoretical model 98

Subcategories:

• Developers have big responsibilities (self-organized).
• Team works under constant pressure.
• Very small and co-located development team.
• Limited need of formalities between team-members:

– Positive impact of high co-location.
– Previous working experience.
– Knowing each other before starting the company.

• Multi-role and full-stack engineers:
– Engineers are responsible for marketing/sales/development (flat structure).
– Generalists developers instead of specialists (full-stack).

• Skilled developers are essential for high speed.
• High-impact of CTO/CEO background.
• Access to external expertise (mentors).

In startups developers have big responsibilities. In fact, the limited human
resources, discussed in CAT7, causes the team-members to be active in every
aspect of the development process, from the definition of functionalities to the
final deployment.

Early engineers in the founding team of a startups are typically multi-role
and full-stack engineers : they are full-stack for being able to tackle di↵erent
problems at di↵erent level of the technology stack (generalists developers instead
of specialists) and multi-role since usually engineers are responsible for market-
ing/sales/development. As remarked by C11: “Instead of hiring gurus in one
technology, startups should hire young developers, generalists, that know how to
quickly learn new technologies, and quickly move among a huge variety of tasks”.

Moreover, having a very small and co-located development team, enables mem-
bers to operate with high coordination, control and communication, which heavily
rely on tacit knowledge, replacing most of the documentation with informal dis-
cussions. Practitioners reported that keeping the development team small helps
startups in being fast and flexible, as remarked by C8: “If you have more than 10
people, it is absolutely impossible to be fast”. Then, also previous working expe-
rience and knowing each other before starting the company enforce the e�ciency
of activities by limiting th need of formalities between team-members.

In every software company, skilled developers are essential for high speed in
development. Especially in startups, the “hacking culture” and a tendency to
the “just-do-it” approach allow the team to quickly move from the formulation
of a feature idea to its implementation. In this regard, C1 comments: “we had
a hacker culture/environment, people hacking stu↵ without formally analyzing it,
but breaking it down and finding a way around. Ticket on trello and go.”



www.manaraa.com

Chapter 6. Theoretical model 99

A limited access to expertise forces the team to rely mainly on their personal
abilities, even though asking opinions to mentors is reported to be a viable practice
to maintain feasible objectives. Furthermore teams work under constant pressure,
“up to 16 hours per day”, mainly constrained by a tight time shortage.

Finally, startups present founders-centric structures, and especially in the
early-stage, it is clear that CTO/CEO background has high-impact on the com-
pany’s development approach. For instance, in case of an academic background,
the CTO encourages the introduction of some architectural design before the
development phase. Moreover, even though the CTO/CEO starts guiding ini-
tially the development process, most of the decision are taken consensually by all
members of the team. Then, the CTO/CEO decides only in particular situations
where some conflicts occur.

6.3.3 Evolutionary approach (CAT2)

Among di↵erent approaches to development, startups prefer to build an initial
prototype and iteratively refine it over time, similarly to the concept of “evolu-
tionary prototyping”9. The reason of using this approach is that startups want to
validate the product against the market as soon as possible, finding the proper
product/market fit. Indeed, they can focus on developing only parts of the system
they want to validate instead of working on developing a whole new system. Then,
as the prototype is released, users detect opportunities for new functionalities and
improvements, providing their feedbacks to developers.

Subcategories:

• Find the product/market fit quickly:
– Flexibility and reactiveness are the main priorities.
– Build a functioning prototype and iterate on it (minimum viable product).
– Progressively roll-out to larger number of people.
– Small iterations (release frequently).
– Validate the product:

∗ Find what is valuable for customers.
∗ Direct contact and observation of users.
∗ Automated feedback collection.
∗ Analysis of product metrics.

• Uncertain conditions make long-term planning not viable:
– Changes in technologies.
– Dynamic competition landscape.
– User requests.
– Changes in market.
– Changes in team.

9Evolutionary prototyping is a software development approach, which aim is to build a robust
prototype to form the core of a new system, to further add improvements and new requirements.



www.manaraa.com

Chapter 6. Theoretical model 100

Since flexibility and reactiveness are the main priorities, the most suitable class
of software development approaches are clearly highly evolutionary in nature. In
fact, as uncertain conditions make long-term planning not viable, startups cannot
base their work on assumptions without rapidly validating them, releasing the
product to market. The uncertainty is first of all in the team composition. In
fact, since the teams are typically very-small and the project knowledge is mostly
not written, even a little change in their composition (e.g. a developer falls in ill)
can have a very high impact on the overall product development. Furthermore,
startups operate in a continuous evolving environment in terms of competitors
and targeted market sectors. Then, to obtain a competitive advantage in the
market, startups typically make use of cutting-edge solutions which evolution
cannot be foreseen in the long run. However, a special role in the day-by-day
managerial decisions is covered by user feedbacks and requests, which represent
the main drivers of what product features should be provided in the short-term.

Indeed, to obtain fast user responses and quickly validate the product, startups
build a functioning prototype and iterate on it over time. In fact, paraphrasing
C4, “[. . . ] you should start with something that is really rough and then polish it,
fix it and iterate. We were under constant pressure. The aim was to understand
as soon as possible the product market/fit iterating quickly, adjusting the product
and releasing fast.”

The company focus on building a small set of functionalities to include in the
first version, and progressively rolls-out to larger number of people with very small
iterations (confirmed again by C4: “we deploy from 5 to 20 times a day”).

The scope of this evolutionary approach is to avoid wasting time in “over-
engineering the system” and building complex functionalities that have not been
tested on real users. By releasing a very small number of good-enough func-
tionalities (see CAT3) the startup can verify the suitability of the features and
understand how to adjust the direction of product development towards actual
users’ needs. The first version of the product is typically a prototype which con-
tains the basic rough functionalities developed with the least possible e↵ort that
can validate critical features which can undermine the startup’s survival in the
short term (recalling Ries’ definition of Minimum Viable Product).

Thanks to a direct contact and observation of users, automated feedback collec-
tion and analysis of product metrics10, startups attempt to find what is valuable
for customers (these activities are in support of Blank’s Customer validation
stage [17]).

Observe that we grouped these subcategories together under the category find
the product/market fit quickly, which contains several concepts similar to the Lean

10The product metrics mainly refer to the UX of the product to find any kind of frictions that
might reduce the satisfaction level of the final users. Basic metrics are traced automatically by
means of tools (e.g. CrazyEgg) or embedded scripts to track users’ behaviors.



www.manaraa.com

Chapter 6. Theoretical model 101

startup methodology pioneered by Eric Ries [7]. However, especially in the early
stage, the above mentioned principles are only part of the complete methodology11

(hence, we refer to them as light principles).

6.3.4 Product quality has low priority (CAT3)

The main interests of software startups, related to the product, are mainly con-
centrated on building a limited number of suitable functionalities rather than
fulfilling restrictive non-functional requirements. This strategy allows them to
quickly release simple products with less need of preliminary architectural stud-
ies (see RQ-2.2).

Subcategories:

• Limited number of suitable functionalities.
• UX is the only important quality:

– Ease of use (operability).
– Attractiveness UI.
– Smooth user-flow without interruptions.

• E�ciency emerges after using the product.
• Product should be reasonably ready-to-scale.
• Users are fault-tolerant in innovative beta products.

Exploring quality aspects considered during the development process, the only
important concerns are expressed in favour of the user experience12, in terms of
ease of use, attractiveness of the UI and most of all, smooth user-flow without
interruptions. The fact that UX is the only important quality is remarked by
C11: “When a user needs to think too much on what action should be done next,
he will just close the application without returning” and confirmed by C3: “If the
product works, but it is not usable, it doesn’t work”.

As discussed in Subsection 6.6.3, the extent to which quality aspects are taken
into account might heavily depend upon the market sector and the type of ap-
plication. Nevertheless, realizing high level of UX is often the most important
attribute to consider for customer discovery of evolutionary approaches in view of

11Lean methodologies on theory are well coupled with these kind of approaches (see Section
7.2 for a comparison between existing methodologies and the one we identified in early-stage
startups).

12According to the ISO 9241-210 (Ergonomics of human-system interaction), UX is defined
as “a person’s perceptions and responses that result from the use or anticipated use of a product,
system or service”. Even though this definition leaves so much to interpretation, we can refer
to it as presented in the glossary.



www.manaraa.com

Chapter 6. Theoretical model 102

the limited human resources and time shortage, presented in CAT7. C4 confirms:
“None of the quality aspects matter that much as the development speed does.”

To achieve a good level of UX while dealing with lack of human resources and
time shortages, startups can analyze similar products of bigger companies which
can a↵ord more rigorous usability studies. Then, the users’ feedback and product
metrics13 begins to have a central role in determining the level of UX achieved.

Other than UX, some other factors can influence the quality concerns of de-
velopment:

• The e�ciency emerges after using the product, letting engineers avoid wast-
ing time in excessive improvements of not-validated functionalities. In fact,
the level of e�ciency can be optimized after attesting the e↵ectiveness of
the minimal set of functionalities, obtained according to CAT2 and to the
concept of MVP.

• The product should be reasonably ready-to-scale to be able to accommodate
a potential growth of the user-base14. Thanks to modern cloud services,
startups can externalize complexity to third party solutions achieving a good
level of scalability with a reasonable e↵ort.

• Realizing high reliability is not an urgent priority since users are fault-
tolerant in innovative beta products. In these cases, users have typically a
positive attitude towards the product, even though it presents unreliable be-
haviours. In this regard, the main focus of beta testing is reducing frictions
between the product and the users, often incorporating usability testing. In
fact, the beta release is typically the first time that the software is available
outside of the organization that developed it. 15.

Finally, startups implement a limited number of suitable functionalities, which
though limited by reasons of limited human resources and time shortage, represent
a viable strategy to focus on shortening time-to-market.

6.3.5 Speed-up development (CAT1)

As remarked above in the description of the high-level model, speed-up develop-
ment represents the core category of our theoretical framework. Firmly grounded
as the primary objective of startups, it shows the most important characteristic
of developing software in the early stage.

13Product metrics are typically web-based statistical hypothesis testing, such as A/B testing.
Moreover, basic metrics are traced automatically by means of tools (e.g. CrazyEgg) or embedded
scripts to track users’ behaviors.

14Note that startups tackle fast growing markets which are particularly subject to sudden
user growths

15Detailed discussion of the impact of innovative products on the user satisfaction is presented
in Subsection 6.6.3 according to the Kano model.



www.manaraa.com

Chapter 6. Theoretical model 103

Subcategories:

• Keep simple and informal workflow:
– Informal and frequent discussion to take quick decisions.

• Externalize complexity to third party solutions:
– Deploy on cloud service infrastructure.
– Use external services (SaaS).
– When possible adopt COTS.

• Use of well-integrated and simple tools:
– Ticket-based tools to manage stories/features:

∗ Partial use of online and collaborative tools.
∗ O✏ine low-precision tools (whiteboard, post-it notes, . . . ).

– Collaborative version control systems to manage the codebase.
– Automatic tools for collecting/report user feedbacks.
– Automatic tools for deployment on the infrastructure.
– Excess of non-integrated tools overloads the team.

• Working overtime to meet deadlines:
– Create disruptive technologies.
– Demonstrate personal abilities.
– Be able to meet deadlines.
– Have the product used in the market.
– Business success (increased ROI).
– Media coverage generates hype.

• Use of standard/known technologies:
– Past experience with same technology.
– Strong community.
– Easier to hire new developers.
– Availability of documentation.

As mentioned before, in order to speed-up development, startups adopt evolu-
tionary approaches supported by a solid team focusing on implementing a minimal
set of suitable functionalities. Startups keep simple and informal workflows to
be flexible and reactive, adapting to the fast changing environment. While a
rigorously defined workflow generally consists of an established sequence of well-
defined steps to follow, startups, by contrast, adopt informal workflows. This
choice is mainly dictated by contextual factors characterized by the general con-
ditions of unpredictability and uncertainty. The adoption of informal workflows
is facilitated by the fact that teams are typically self-organized and developers
have big responsibilities.

Additionally possible planning activities are refrained by the the aim to shorten
time-to-market, as reported by C8: “Speed was the essence so we didn’t plan out
too many details”. To deal with such unpredictability, startups prefer to take
decisions as fast as possible, mainly by means of informal and frequent verbal
discussions.



www.manaraa.com

Chapter 6. Theoretical model 104

Despite Agile principles appear to be suitable to embrace changes, especially
in the early-stage, development practices are often perceived as time-wasters and
ignored to accommodate the need of releasing the product to market as quickly
as possible. In this regard, to maintain the simplest and most informal approach,
startups aim to find the product/market fit quickly and implement a limited num-
ber of suitable functionalities. This approach is considered possible also in view
of a lack of systematic quality assurance activities, since only the user experience
is considered as important and other quality aspects, such as e�ciency, can be
postponed after the first release.

Another strategy, which supports startups in quickly delivering products, is
the externalization of complexity on third party solutions by: making use of third
party components (COTS) and open source solutions (both for product com-
ponents either development tools and libraries); taking advantage of external
services; and deploying the product on external infrastructures, for the sake of
presenting a product reasonably ready to scale for a possible future growth16.

Even though the use of well-integrated and simple tools allows startups to
automate many activities and reduce their completion time, drawbacks of such
approaches are the increased concerns of interoperability issues. A category of
tools, worth , is represented by advanced version control systems, which are not
only used to manage the code-base, but for many other purposes such as: assign-
ing tasks; trace responsibilities; configuration management; issue management;
automatic deployment; discussions and code reviews.

Startups can further improve development speed by making use of standards
and known technologies which are widely recognized, well tested, and supported
by strong communities. Moreover, the use of widely adopted standards and frame-
works reduces the need of a formal architectural design since most of implemen-
tation solutions are well documented and ready-to-use. This is confirmed by C1:
“as long as you use Ruby standards with the Rails framework, the language is
clean itself and doesn’t need much documentation”.

Other important factors that positively impact the speed of development are
the team’s desire to: create disruptive technologies ; to demonstrate personal abil-
ities ; and to have the product used in the market. As reported by practitioners,
these factors are essential to enhance the morale of developers and therefore to
achieve higher team performances. By contrast, especially in the typical sprint-
based environments of Agile, when a developer is not able to meet deadlines the
morale goes down, hindering the development speed.

Finally the constant pressure under which the company regularly operates,
leads the team to often work overtime to meet deadlines. But as reported by
practitioners, such way of working can be an e↵ective strategy only in the short

16A good initial degree of scalability, at least infrastructural, can be reached with modest
costs and time. However, this is not a necessary condition for realizing a functioning MVP, but
only a recommendation.



www.manaraa.com

Chapter 6. Theoretical model 105

term since can lead to poorly maintainable code and developers burnouts in the
long run.

6.3.6 Accumulated technical debt (CAT5)

Startups achieve a very high development speed by radically ignoring aspects
related to documentation, structures and processes. However, although these
aspects are not considered important in the very first stages, they will become
increasingly more important for the productivity in the long-term, as we illustrate
in CAT6.

Subcategories:

• Informal specification of functionalities:
– Informal definition of business objectives.
– Low-precision list of features to implement initially.
– Self-explanatory user stories.
– Features prioritization based on personal experience.

• Rough and quick feasibility study:
– Lack of formal Analysis:

∗ Exploring alternative solutions to mitigate limited knowledge.
∗ Hard to analyze risks with cutting-edge technologies.
∗ Learn from competitors’ solutions and mistakes.
∗ Past experience in similar contexts helps assess feasibility.

– Keeping the product as simple as possible.
– Naive estimations based on personal experience.

• Lack of architectural design:
– Only high-level mockups and low-precision diagrams.
– Maintaining architecture only when strictly necessary.
– Using modularization and frameworks from day 1.
– CTO’s academic background lead to a first attempt of architectural design.
– Describing critical interactions with third-party components only.

• Lack of automated testing:
– Automatic and partial testing of critical parts only.
– Let users report non-critical bugs.
– Major bugs emerge by trying the product internally.

• Minimal Project Management:
– Uncertainty makes formal scheduling pointless:

∗ Only a final release milestones is viable.
∗ Keep internal milestones short and informal.

– Naive metric to trace project progress.
– Naive task assignment mechanism.
– Ticket-based systems to control to-do lists.
– No dedicated person for project management.
– Simplify issue management by integrating it with feature management.

• Tacit Knowledge:
– No need of recording taken decisions (informal discussions).
– Only minimal and not updated initial documentation.



www.manaraa.com

Chapter 6. Theoretical model 106

– Clear and self-explanatory code (standards).
– Documentation external to source-code perceived as waste.

Instead of traditional requirement engineering activities, startups make use of
informal specification of functionalities by means of ticked-based tools to manage
low-precision lists of features to implement, written in form of self-explanatory
user stories17. Practitioners intensively use physical tools such as post-it notes
and whiteboards, which help in making functionalities visible and prioritizing
stories based on personal experiences. C4 comments “[. . . ] it is the only way.
Too many people make the mistake of sitting down and write big specs and then
they build it for four months, realizing the product is not valuable only at the
end.”

Since startups are risky businesses by nature, even less attention is given to
the traditional phase of analysis, which is replaced by a rough and quick feasi-
bility study “only sometimes and however informally”, as stated by C5. First of
all it is generally hard to analyze risks with cutting-edge technologies. To find out
the feasibility of such cutting-edge projects, startups attempt a first implementa-
tion with rough and informal specifications, assuming that project’s complexity
will remain limited to a small number of functionalities, as discussed in CAT3.
Additionally by keeping the product as simple as possible and learning from com-
petitors’ solutions and mistakes, practitioners can use their past experiences in
similar contexts to help assessing feasibility of the project. Finally, to avoid re-
strictions on the flexibility of the team, potential limiting decisions are taken only
when strictly necessary and anyhow as late as possible.

Another important factor which contributes to accumulate the technical debt
is the general lack of architectural design, substituted by high-level mockups and
low-precision diagrams, using modularization and frameworks from day 1 and
describing critical interactions with third-party components only. In particular,
the use of well-known standards, frameworks and conventions limits the need
of formal UML18 diagrams and documentation, and provide a minimum level of
maintainability. Additionally, since quality aspects are not a main concern (see
limited number of functionalities and e�ciency emerges after using the product
in CAT3) having a well-structured architecture remains a secondary priority, and
design is conducted only when strictly necessary.

A similar attitude towards verification and validation brings startups to a se-
vere lack of automated testing, which is mainly replaced by manual smoke tests
executed by: trying the product internally; seeking for critical faults; and letting

17User stories are very high-level definitions of the project requirements, written by the users’
point of view. They contain just enough information so that the developers can produce a
reasonable estimate of the e↵ort to implement them.

18Unified Modeling Language (UML) is a standard to specify, visualize, modify, construct
and document the artifacts of an object-oriented software-intensive system under development.



www.manaraa.com

Chapter 6. Theoretical model 107

early adopters report non-critical bugs. Paraphrasing C3, “Trying the product
internally allows us to get rid of 50% of bugs of important functionalities. Mean-
while users report bugs of secondary functionalities, eventually allowing us to
mitigate the lack of testing. Indeed, staying one week in production enables us
to identify 90% of bugs”. The lack of complete automated tests is partially also
motivated by the fact that users are fault-tolerant in innovative beta products and
by the limited number of functionalities, which allow the team to easily control
critical bugs. However, in certain cases where components of the system might
cause loss of data or severe damages to the product or users, engineers realize a
reasonable level of automatic testing. In such cases, aided by modern automatic
tools, they can quickly assess the status of the system integration as they add
new functionalities to the product.

Furthermore, a rigid project management is perceived as “waste of time”
which hinders the development speed since the uncertainty makes formal schedul-
ing pointless (C9 reports that “initial chaos helps to develop faster”). Startups’
minimal project management is supported by keeping: internal milestones short
and informal, low-precision task assignment mechanism and a very low attention
for project metrics (paraphrasing C13, “the only track of progress was made by
looking at closed tickets”). In this context only a final release milestone is viable,
which helps practitioners to remain focused on short term goals and put new
features in production. To further speed-up development, startups simplify issue
management by integrating it with feature management. Then, the limited num-
ber of functionalities and the use of standard/known technologies with a simple
workflow are the main reasons for not establishing a heavy project management
process since the project and technologies can be autonomously managed by the
development team (with characteristics of: co-location, self-organization and very
small size).

Finally, one of the categories, which most contributes in growing the accumu-
lated technical debt, is the substantial use of informal and verbal communication
channel on daily basis. The high co-location and the fast paced development ap-
proach increase the volume of the tacit knowledge and the consequent severe lack
of any kind of documentation. In fact, C4 observes in this regard that: “[. . . ]
the issue of having documentation and diagrams out of the source code is that
you need to update them every time you change something. There is no time
for it. Instead, there is a huge pay o↵ in having a code that is understandable
itself.” This approach is supported by the fact that startups make use of simple
and informal workflow, standard/known technologies, very small and co-located
development team with limited need of formalities.

6.3.7 Initial growth hinders productivity (CAT6)

The lack of attention given in the first phases to engineering activities allows
startups to ship code extremely quickly (see CAT5). However, if successful, the



www.manaraa.com

Chapter 6. Theoretical model 108

initial product becomes more and more complex overtime, the number of user
increases and the company size starts to grow. Under these circumstances the
need of controlling the initial chaos forces the development team to return the
accumulated technical debt instead of focusing on new users’ requests. Hence,
initial growth hinders performance19.

Subcategories:

• Company and user size grow:
– Business event:

∗ New round of funding.
∗ Acquisition.
∗ Competing product released to market.

– Open the first public release.
– Increasing number of users.
– Current team not able to manage increased complexity.
– Hiring new sta↵ members.

• Focus shifts to business concerns.
• Need of re-engineer the product:

– Portion of codes needs to be rewritten.
– Substantial refactoring of the codebase.
– Increase scalability of the product/infrastructure.
– Standardize codebase with well-known frameworks.

• Pay o↵ the accumulated technical debt:
– Fear of changing a product which is working.
– Growing necessity of having a release plan.
– Need of control initial chaos with more structured workflow:

∗ Partially replace informal communication with traceable systems.
∗ Introduce basic metrics for measuring project and team progress.

When the number of users increases, customers become more quality demand-
ing and also scalability issues start to arise.

Usually, company and user size grow when new business events occur, such as:
a new round of funding, a possible acquisition, the release of a competing product
on the market, or when the project is open for the first public release. As a
consequence, the increasing number of users creates growing number of requests
and expectations. Therefore, whereas the project lacks of minimal processes,
suddenly, the current team is not able to manage increased complexity of new
functionalities to implement and maintain the codebase.

Subsequently, practitioners start considering the need of project management
activities, also in view of hiring new sta↵ members, as discussed by C13: “(project

19Performance is defined in terms of number of new user stories, which brings new suitable
functionalities to the users, implemented in a certain amount of time.



www.manaraa.com

Chapter 6. Theoretical model 109

management) is strictly necessary if you radically change the team or when team
grows. The informal communication and lack of documentation slow down the
process afterwards”. Project management becomes further important when the
focus shifts to business concerns. In fact part of the e↵ort, which was initially
almost entirely dedicated to product development, is required to be moved to the
business. Moreover the availability of project information becomes an important
issue because of the accumulated tacit knowledge, which hinders the ability of
new hires to quickly start the development of project tasks.

When the company faces growth, the partial and informal engineering activi-
ties that have been conducted during the first phases of rush development (refer
to CAT5 subcategories minimal project management, informal specification of
functionalities, rough and quick feasibility study, lack of automated testing, tacit
knowledge), force the company to pay o↵ the accumulated technical debt. In fact,
under these circumstances, startups need to be able to cope with the renewed
needs and expectations of both the company (internal necessities) and customers
(product).

Another factor that slows down performance is caused by the fact that por-
tion of codes needs to be rewritten and substantial refactoring of the codebase is
required by the increasing product’s demand.

In fact practitioners realize that some decisions taken (or not taken) during
the rough and quick feasibility study before starting the implementation, have
led to negative consequences on the long term performance and maintainability
of the product. Additionally, the quick product design decision initially taken,
might not be able to satisfy the increased demands of the product’s users and
developers (lack of architectural design). The combination of these factors leads
to the need of re-engineer the product.

By re-engineering the systems, startups aim to increase the scalability of the
product/infrastructure and starting to standardize the codebase with well-known
frameworks.

C7 reports that: “To mitigate this (lack of frameworks) I had to make a
schema for other developers when we hired them. We had to do a big refactoring
of the codebase, moving it from custom php to Django, normalizing the model and
making it stick with the business strategy. I had the code in di↵erent php server
communicating via JSON, some engineering horror. Now that we are fixing it,
it’s really painful. We had to trash some code. However I don’t regret that I didn’t
make this choice sooner, it was the only way”.

The fear of changing a product, which is working, arises when product com-
plexity increases. In fact, the changes to the codebase, to support bug fixing,
become highly interrelated with other functionalities and di�cult to manage be-
cause the product is poorly engineered (see CAT5). Therefore, the fear arises from
changing a validated product that might bring changes to the user responses.

The increasing number of feature requests causes the growing necessity of
having a release plan, rationalizing the rollout of new features.



www.manaraa.com

Chapter 6. Theoretical model 110

Therefore, startups begin to partially replace informal communication with
traceable systems and introduce basic metrics for measuring project and team
progress in order to establish an initial structured workflow. In conclusion, be-
cause the increasing number of users causes issues in scalability and reliability,
the need of more structured workflow becomes of major relevance. C11 states:
“Yet, it is still better to have a reasonable drop-down in performance when team
grows than lose time in the beginning”.

In Chapter 7 we dedicated Section 7.5 to discuss the evolution of startups.

6.4 Theory generation

In order to explain and understand the development strategies in early-stage
software startups we construct the theory generated and supported by the theo-
retical framework presented above. As discussed in Subsection 4.3.5, we applied
the paradigm model to form the final theory, here presented:

Focusing on limited number of suitable functionalities, and adopting partial
and rapid evolutionary development approaches, early-stage software startups
operate at high development speed, aided by skilled and highly co-located de-
velopers. Through these development strategies, early-stage software startups
aim to find early a product/market fit within extremely uncertain conditions and
severe lack of resources. Nevertheless, by speeding-up the development process,
they accumulate technical debt, causing an initial and temporary drop-down in
performance before setting o↵ for further growth.

The theory above is composed by di↵erent elements reflecting the paradigm
model shown in Figure 4.19. Here we structure the list of elements presented in
the theory:

• Causal conditions are represented by three main conceptual categories:
product quality has low priority, evolutionary approach and team is the
catalyst of development.

• the Phenomenon is represented by the core category speed-up development.
• the Context is limited to web early-stage software startups operating in
conditions of severe lack of resources aiming to early find product/market
fit.

• Intervening conditions are summarized by the extremely uncertain devel-
opment environment20.

20Refer to subcategory uncertain conditions in Subsection 6.3.3 in terms of business and
technology management, and companies whose main development objective is shortening time-
to-market. Limitations of the theory are further discussed in Section 8.5.



www.manaraa.com

Chapter 6. Theoretical model 111

• Action and interaction strategies are represented by the accumulation of
technical debt (see Subsection 6.3.6).

• Consequences lead to a temporary performance drop-down (see Subsection
6.3.7).

6.5 Theory implications (RQ-2)

In this subsection we present a list of the most relevant implications which emerge
from the behaviour of early-stage startups, formally expressed in the model above,
answering to RQ-2 (What is the current state-of-practice related to software devel-
opment strategies in early-stage startups? ) through its sub-questions. Although
the startups we inquired in the case study were spread across di↵erent nations
and market sectors, we have found several patterns that emerged very clearly:

• The most urgent priority of software development is to shorten
time-to-market. When developing a new product, which has not been
attempted before, it is crucial for the company to release the product soon
and observe the users reactions. The company’s chances to survive, are
strictly related to the ability to find the right product/market fit as quickly
as possible. Developing software without releasing it for a long period of
time, coming up with very complex solutions often is not a viable option.
Business demands, investors interests, market pressures and the general
uncertain conditions force startups to quickly iterate on the product by
exploring and experimenting new functionalities progressively rolled-out to
early-adopters.

• Startups do not apply any standard development methodology.
When focused on building the first version of the product, startups do
not observe any specific and standard development methodologies or pro-
cesses21. From an accurate and in-depth investigation into day-by-day ac-
tivities, it emerged that the number of the observed development practices
is extremely small and never systematic (only little pair programming ses-
sions and rarely test driven development). Despite the wide number of
publications, which discuss the adoption of lightweight methodologies, we
have found that especially in this first stage not only methodologies but
even individual practices are basically neglected.

• The closest development approach undertaken by early-stage star-
tups is the Lean startup methodology. A highly evolutionary devel-
opment approach, centered around the quick production of a functioning

21Is worth noticing however that when asked the first question “Did you use any specific
development methodology?” 10 startups out of 13 referred to some kind of customized light
version of SCRUM or XP (see Subsection 5.2.4 for more details).



www.manaraa.com

Chapter 6. Theoretical model 112

prototype and guided by customer feedbacks is a central aspect of the Lean
startup methodology pioneered by Ries [7]. However, startups do not for-
mally follow the cycle build-measure-learn as it is proposed by the method-
ology, where they should set-up an experiment to test the riskiest element
of the business idea, nor make explicit use of the good practices suggested
in the book. For example, when it comes to user feedbacks, startups do
not explicitly follow the step-by-step process of customer development for-
mally defined by [17]. Instead, startups absorb and implement the high-level
principles that outlines the methodology, reflected in the model by the the-
oretical category find the product/market fit quickly and its subcategories.

• The greatest part of engineering activities of startups are focused
on the implementation while only little attention is given to more
conventional activities (project management, requirement spec-
ifications, analysis, architecture design, automatic testing, . . . ).
Especially when bringing the first product to the market, the attitude of
startups towards traditional engineering activities is strongly characterized
by a general feeling of unnecessity. Every document, artifact or process,
which does not produce a short-term tangible benefit to the software pro-
duction is perceived as a waste of time. The most visible downside of this
kind of approach is a growing accumulated technical debt (Subsection 6.3.6),
which is partially mitigated by di↵erent elements supporting the develop-
ment. Answering RQ-2.1, project management is substituted by the use of
informal short-term deadlines supported by online collaborative tools with
a kanban-board-like fashion; feature list are managed through ticket based
systems supporting low-precision lists of requirement specifications in the
form of user stories; after the essential set of functionality have been defined,
making estimations and prioritization of features is not of much help; the
traditional analysis process is, to a great extent, neglected (analysis is infor-
mally conducted for specific critical functionalities, usually by studying sim-
ilar software solutions and rarely documenting decision-making processes);
the design of the architecture is usually replaced by the use of well-known
frameworks22 and naive diagrams on the whiteboard; advanced and modern
version control systems work well for the configuration management; high-
volumes of informal communication and the use of coding standards reduce
the need of formal documentation; in the majority of startups writing auto-
mated test cases is perceived as a waste too (since the product reliability is
not a primary concern, engineers identify major bugs by testing the prod-
uct internally and letting early adopters identify secondary bugs); finally,

22The usage of well-known frameworks has been recognized by practitioners to provide many
benefits with a relatively short learning time: frameworks have limited need of documentation,
facilitate hiring, simplify the architecture, improve interoperability and are supported by active
online communities. These elements are very important for startups dealing with sever shortage
of resources.



www.manaraa.com

Chapter 6. Theoretical model 113

the infrastructural complexity of deployment is typically left to third party
cloud applications23. Thus, by radically ignoring activities related to doc-
umentation, structures and processes, startups achieve a very high initial
development speed in the first stage, but on the other hand they accumu-
late a technical debt that needs to be at least partially fulfilled when the
company and the product grow.

• The first release of the product includes only a limited set of well
suitable functionalities focused on user experience. The beta version
is usually focused on a minimal and essential set of functionalities providing
a reasonable user experience (UX). As confirmed by practitioners, the user
must be able to accomplish a task on the product without major interrup-
tions in the flow, which would cause frustration before being able to capture
his attention. To realize UX in a short time frame, developers focus on a
limited number of suitable functionalities, especially in the first version(s) of
the product. Other product qualities are regarded as less important24: for
instance, obtaining a high-reliability is not a priority since early adopters of
innovative product are keen to accept minor bugs in exchange of new func-
tionalities25. Furthermore, thanks to cloud computing and more in general
high availability of third party components, aspects such as performance, se-
curity and scalability can be achieved with a reasonable e↵ort. Thus, given
the general lack of quality concerns26, and supported by the fact that the
optimal strategy to improve the UX is by having the product used by real
customers, startups can e↵ectively focus on achieving short time-to-market
(see RQ-2.2).

23Note that in this thesis the described development activities are directly derived from the
case study as result of positive experiences. On the contrary, the conduction of “traditional”
engineering practices was reported as a waste (examples of past experiences in conducting
architectural design and extensive testing have been reported by the interviewees as useless in
order to find an early product/market fit, concept further discussed in Chapter 7). Indeed,
only the development strategies described by the theoretical framework (see CAT2, CAT3 and
CAT4 in Section 6) resulted as most important factors to enhance the development speed.

24Note that from a business perspective, one might argue that established companies might
take advantage of the new idea and develop a better version of the product internally. Despite
this might represent a risk, established companies usually cannot a↵ord to operate in a market
of innovators and early adopters group of users - described by the Roger’s bell curve in [168] -
because of the little return of investment they would gain, as discussed by Christensen in [169].
Instead, established companies have more interests in acquiring a startup and all the knowledge
it has gained during the customer development process (see Appendix A.2.5 for more details)
while focusing e↵ort on acquiring larger shares of a “mass market” sector.

25These results further highlight di↵erences between software development in startups and
traditional web engineering, where quality aspects are rated as very important, even more than
time-to-market [170].

26The extent to which quality aspects are considered by the company, is strongly influenced
by the market sector and the application type, as discussed in Subsection 6.6.3. However our
case study has been carried out in startups working on innovative web application with very
few quality concerns.



www.manaraa.com

Chapter 6. Theoretical model 114

• Engineering activities are supported by low-precision artifacts and
collaborative tools integrated with the development environment.
Startups take advantage of the simplicity of cutting-edge tools, which re-
quire a minimum learning and maintenance e↵ort and provide a large payo↵.
Tools are used for a vast number of tasks: ticked-based boards to manage
user stories; systems to collect user feedback; tools for tracing product met-
rics; and scripts for managing deployments. The most prominent families
of tools, which support software development in startups are modern ver-
sion control systems. They are used by practitioners not only to manage
the code base and the repositories, but for many other purposes such as:
task assignment; tracing responsibilities; configuration management; issue
management; automatic deployment; discussions and code reviews. On the
other hand, an excessive usage of out-of-the-code tools can negatively af-
fect the development speed, as significantly reported by C11: “We realized
we were losing too much time moving tickets around boards than actually
working on stories. You need to find the balance between the time spent
with tools and the amount of actual coding”. This risk is often mitigated
with an intense usage of o✏ine manual tools: especially post-it notes and
whiteboards are reported to be particularly e↵ective to foster internal com-
munication within the team.

• The founding team is the most important determinant of speed.
More than techniques and methodologies, the features of the team are the
essential factors to achieve high-development speed. Discussed in the the-
oretical category the team is the catalyst of development (see Subsection
6.3.2), this result has been confirmed in multiple occasions both in the in-
terviews and in the questionnaires. What is truly important for the startup,
among other factors, is the extremely high-colocation which enables continu-
ous informal and colloquial coordination and discussions. The initial (small)
development team usually spends most of the hours of the week working
closely to implement the product, often extending the conventional o�ce
hours. The large amount of communication, spontaneously held in informal
places, has been proven to be an extremely e↵ective element of several suc-
cessful software projects [171]. Hence, the vastly informal development en-
vironment of startups acts as a catalyst of speed. Other important elements,
which contribute in achieving such an initial high-speed, are: minimal set
of functionalities with low concerns on product quality; evolutionary proto-
typing approach; smart use of advanced tools and frameworks; low precision
artifacts; and the close colocation and capability of the team.

• The initial lack of structures and processes negatively a↵ects the
performance when the company starts to grow. One of the pri-
mary objectives of startups is to expand their business into fast growing
markets. In fact, if successful, the company will face a growth in terms
of number of customers, employees and product functionalities. Then, the



www.manaraa.com

Chapter 6. Theoretical model 115

increased complexity arises the necessity of controlling the initially chaotic
software development environment. Under delicate circumstances, where an
increased market demand meets a poorly engineered product and process,
the development team need to start returning the accumulated technical
debt. As reported by practitioners, introducing more structures, documen-
tation and standard procedures, cause an initial drop-down in performance
which severity depends on the speed of growth, the amount of technical
debt and the capacity of the team to absorb it.

• Startups bring the first product to market in a very short-time and
practitioners are satisfied with the software development strategy.
The companies inquired in the case study were typically able to release the
first beta of the product in a short time frame. Although practitioners
acknowledge the initial negative consequences of the technical debt on sub-
sequent performances, they confirm that it is better spending some e↵ort
in later stage to recover the debt than losing time in over-engineering the
production initially with the risk of never achieving any significant growth.

All of the above observations are extracted from the analysis of the model,
which is systematically derived from empirical data of the case study. Indeed, with
slightly di↵erent levels of adherence, the implication we presented are reflected
in the behaviour of the great majority of companies in the sample. The results
of this analysis, which has been focused on the software development strategy
from the idea conception to the first release, indicate that startups are far from
adopting standard or ad-hoc development methodologies, especially in this phase.
The typical tendency is to focus on the team capability to implement and quickly
iterate on a prototype, which is released very fast. Thus, in a context where even
for the most lightweight agile methodologies is hard to penetrate, we believe that
it is premature to discuss issues related to SPI. Researchers should rather focus
on the trade-o↵ between development speed and accumulated technical debt [48],
which appears to be the most important determinant for the future of software
development in the company, as further discussed in Chapter 7.

6.6 Theory validation

In this section we discuss the validity of the implications of this study, obtained
by means of cross-methodological observations:

• We perform a comparison between our framework and similar models and
frameworks (see Subsection 6.6.1).

• We perform a validation of the theoretical framework by triangulating the
results of di↵erent methodologies with the existing literature. We highlight
the areas which have been neglected by existing studies, providing possible



www.manaraa.com

Chapter 6. Theoretical model 116

directions for future studies (see Subsection 6.6.2).
• We identify and discuss confounding factors which could interfere with the
theoretical model (see Subsection 6.6.3).

• We validate the correctness of the GT procedure by attesting that high-
level relations between categories, evaluating if they are compliant with the
empirical data we collected (see Subsection 6.6.4).

• Finally we demonstrate how engineering elements independently reported in
the follow-up questionnaire by practitioners, can be mapped to theoretical
categories in the model (see Subsection 6.6.5).

6.6.1 Comparison with other frameworks

To validate the generalization of the theory, in this section we describe concep-
tualizations defined from the framework (see Section 6.3) that are in support of
a previous model developed by Coleman in [2, 29, 27]. We refer to Coleman’s
framework since it is the only author which has conducted a similar research in
startups’ context, even though with a di↵erent focus. The author investigated
factors in software development that hinder initiatives of software process im-
provement (SPI) in much more mature companies.

In this subsection we illustrate the most important aspects considered by Cole-
man, examining similar and contrast factors in face of our theoretical framework.
We will consider only those categories strictly related to the core category, which
relations, as described in GT methodology, generate complete explanatory power
of the generated theory.

With his framework Coleman aims to highlight how managers consider two
distinct kind of processes: essentials and non-essentials. The essential processes
are the most closely linked to the product development such as requirements
gathering, design and testing. The non-essential processes are those that might
be omitted such as planning, estimating and staging meetings.

In relation to the the factors influencing process formation, Coleman considers
the background of software development manager and the market requirements
the main contributors. In particular, he discusses how practices are routinely
removed: “With most methodologies and approaches, very few stick to the letter
of them and they are always adapted, so we adapted ours to the way we wanted
it to work for us, for our own size and scale”.

Our theoretical framework explores the same challenges in software startups,
where the act of tailoring processes leads developers to adopt only minimal prac-
tices, which are most suitable for the startups context. Furthermore, CTOs and
CEOs’ background has a great impact on the speed of the development process
as described in Subsection 6.3.2. This is in accordance to Coleman’s framework,
which presents the background of founders and development managers as main
factors that a↵ect the management style of the development process.



www.manaraa.com

Chapter 6. Theoretical model 117

Di↵erently from Coleman’s, our theoretical framework doesn’t present how
market requirements can a↵ect the conduction of processes. In this regard, Cole-
man describes how the more the definition of requirements are predictable the
more well-defined workflows are established. This particular aspect is considered
as a confounding factor27 in our study since we were not able to ground this con-
cept in the data. Therefore we discuss it with additional details in Subsection
6.6.3. In the next part we present the most important comparisons between our
framework and Coleman’s to highlight similarities and di↵erences. As shown in
Figure 6.3, small rectangles represent the main categories of Coleman’s frame-
work, whilst big rectangles with bold labels represent ours.

Figure 6.3 depicts Coleman’s network of cost of process (core category) and
all the factors that in management contributed to the lack of software process
improvements (SPI)28.

Figure 6.3: Network for the core category of Coleman’s framework, adapted from [2]

The cost of process represents the lack of formal and prescriptive workflows
in development, mainly conducted by means of verbal communication limiting
heavy documentation and bureaucracy.

The author reports practitioners’ perception that documentation alone would
not have ensured a complete shared understanding of project requirements. More-
over, defined processes are perceived by managers as additional items with a neg-
ative impact on the Creativity29 and Flexibility of the development team. This is
in accordance with the generated theory (see Section 6.4), which bases the reasons

27The identification of confounding depends on the context in which the study is conducted
and on the background knowledge of the researchers [172].

28The reported network is not complete. For the sake of brevity we present only the conceptual
categories related to the core category.

29Creativity is considered as confounding factor to this research (see Subsection 6.6.3).



www.manaraa.com

Chapter 6. Theoretical model 118

of adopting evolutionary and low-precision engineering elements to the flexibility
and reactivity attributes of the development process.

At this regard we can paraphrase a comment recorded by Coleman during an
interview: “When we set up we had more supervisory and managerial roles in
that group than we have now and we had to scale that back which has made things
a lot more flexible. I do think you have to be nimble, quick and capable being
responsive in our position. That works well and I don’t want to lose it.” [2].

As shown in Figure 6.3, verbal communication, lack of heavy documentation
and bureaucracy can easily be reconducted to the accumulated technical debt cat-
egory (see Subsection 6.3.6) that is consistent with Coleman’s framework, which
describes how startups experience the lack of main engineering activities and doc-
umentation. Additionally, the speed-up development category expresses the same
concept of flexibility and process erosion since they have direct relation to the
subcategory of keep a simple and informal workflow, as discussed in Subsection
6.3.5.

As also reported in our framework, the definition of a “minimum process” is
not a matter of poor knowledge and training, but rather it is the necessity of
operating with solutions that let the company move faster. “One-size-fits-all”
solutions have always found di�cult to penetrate small software organizations
[173]. In fact, also when startups began establishing any SPI process they expe-
rienced process erosions, which resolved to a barely su�cient workflow to satisfy
the organizational business needs.

Then, software startups privilege the use of agile principles in support of
creativity and flexibility instead of SPI methods, whereby processes need to be
predictable and repeatable. Nimble and ad-hoc solutions prevent the use of heavy
bureaucracy and fast communication strategies, even though the accumulated
tacit knowledge is hard to manage and to transfer to new hires as also discussed
by the category CAT6.

Also in [27], the author describes how the “management approach” is ori-
ented towards “embrace and empower” solutions in contrast with “command and
control” style, where there is an evidence of trust in development sta↵ to carry
out tasks with less direct supervision, greater delegation of responsibilities and
a more generally consensual environment. Nevertheless, software development
manager and founders have still impact on management style and indirectly on
software development process. In the case of early-stage startups, founders are
mainly the software development managers as CEOs/CTOs and technical prac-
titioners at the same time30. Then, as Coleman identified that background of
founders and managers highly influence the software development process, also in
our framework the background of CEOs and CTOs shapes the high-level strate-
gies adopted to develop the initial product. Notwithstanding, team members

30Note that Coleman, in his studies, refers to more mature software startups, as discussed in
Chapter 3.



www.manaraa.com

Chapter 6. Theoretical model 119

remain self-organized, able to intervene in all the aspects of the development
process without any direct supervision, as discussed in Subsection 6.3.2.

In conclusion, by the comparison of the theoretical framework with Coleman’s
framework we have found that despite Coleman’s study contributes to define
which factors hinder the introduction of SPI, his results are coherent with the
theory generated within our research31 (see Section 6.4), and further consideration
regarding market and application context of startups need to be explicit into the
provided results. Then in addition to market requirements, as shown in Figure
6.3, also the creativity category will be further discussed in Subsection 6.6.3 since
both couldn’t be directly correlated to our theoretical framework.

With wider research focus, another study, developed in 1986 by Brooks [176],
discussed what challenges are involved in constructing software products. In his
study the author divides di�culties in development into essence (inherent to the
nature of the software), and accidents (di�culties attending software production
but which are not inherent). In other words essence concerns the hard part of
building a software through activities such as specification, design, testing. Acci-
dents refer to the labor of representing the software or testing its representation.

The author claims that the major e↵ort applied by engineers in the last
decades was dedicated towards accidents problems, trying to exploit new strate-
gies to enhance software performance, reliability and simplicity of development,
such as the introduction of high-level languages for programming. Despite the
great achievements in improving development performance, the essence property
of the software remained unaltered.

Essence di�culties are inherent to: complexity, conformity, changeability and
invisibility. Complexity mainly refers to interaction of software modules and ele-
ments between each others in some non-linear fashion, which increases accordingly
to the project size. Conformity refers to the duty of software to adapt to human
institutions and systems. Changeability refers to the constant pressure of soft-
ware products to accommodate culture, market, laws and hardware transitions.
Invisibility refers to the di�culty of representing software in space32.

31Note that a wide variability of processes is a key factor for startups. In contrast with
some SPI processes, such as Six Sigma which objective is minimizing unpredictability in the
definition of workflows [174], startups seem to follow the Fischer’s Fundamental Theorem of
natural selection [175]. In fact, moving towards flexible and variable processes (easy to adapt
to the uncertain conditions), increase odds of “natural selection” only when some “restrictive
conditions” are met (i.e. CAT1, CAT2, CAT3 and CAT4, described in Section 6.3). In other
words, even though ignoring SPI practices is advisable, not following SPI does not predict
major adaptiveness of startups development to the market. But, to imply a major evolutionary
product/market fit, certain conditions explained in Section 6.3 need to be considered. Further
discussion related to changes in flexibility and reactiveness are presented in Chapter 7.

32In fact, attempts to diagram software structures brought to constitute not one, but several
and general graphs. Despite progress in restricting and simplifying the structures by software
models they remain inherently more complex than geometric representation in the way that
land has maps, chips have diagrams, computers have connectivity schemas.



www.manaraa.com

Chapter 6. Theoretical model 120

Basic attacks (or mitigation strategies) on the conceptual essence proposed
by the author are:

• Buy versus build- the most radical possible solution for constructing soft-
ware is not to construct it at all, taking advantage of what others have
already implemented.

• Requirements refinement and rapid prototyping- avoid deciding precisely
what to build but rather iteratively extract and refine the product require-
ments with customers and users.

• Incremental development- starting from simple solutions allows organiza-
tions to early prototype and control complexity overtime.

• Great team- people are the center of a software project and it is profoundly
important to empower and liberate their creative mind.

What we observed is that the basic attacks presented in 1986 by Brooks, can
be easily ascertained within the theoretical framework presented in this thesis.

• Buy versus build is the main strategy, which enables startups to external-
ize complexity to third party solutions explained within CAT1, speed-up
development.

• Requirements refinement and rapid prototyping as evolutionary development
approach to maintain a fast release-cycles during development (CAT2).

• Incremental development as main purpose of focusing on limited number of
suitable functionalities examined in product quality has low priority category
(CAT3).

• Great team as main objective of empowering developers’ capabilities de-
scribed in team is the catalyst of development(CAT4).

Brooks’ forecast about software development strategies is revealed to be ex-
tremely accurate, according to the state-of-practice in modern startups.

6.6.2 Theoretical categories and existing literature

In this section we report the evaluation of our theory in contrast with main
relevant contribution of studies retrieved with the mapping study (see results in
Section 5.1), discussing the categories of the theoretical model.

To conduct this evaluation, researchers mapped the contextual characteristics
of startups, identified by the selected studies (themes in Table 5.7), into the
categories developed with the GT. Table 6.1 shows how all the 15 themes can be
wrapped inside the framework’s categories.

Category (GT) Theme (SMS)
Speed-up development (CAT1) T.10 One product

T.15 Rapidly evolving
Table 6.1 – Continued on next page



www.manaraa.com

Chapter 6. Theoretical model 121

Table 6.1 – Continued from previous page

Category (GT) Theme (SMS)
Evolutionary approach (CAT2) T.4 Uncertainty

T.13 Highly reactive
Product quality has low priority (CAT3) T.4 Uncertainty
Team is the catalyst of development (CAT4) T.3 Small team

T.9 Flat organization
T.11 Innovation

Accumulated technical debt (CAT5) //
Initial growth hinders performance (CAT6) //
Severe lack of resource (CAT7) T.1 Lack of resources

T.2 New company
T.5 Highly risky
T.6 Not self-sustained
T.8 Low-experienced team
T.12 Time pressure
T.14 Third party dependency

Table 6.1: Final comparison - Categories and themes

The capability of the model to accommodate the contextual features of star-
tups, identified by other researchers, gives us more confidence in the validity of
our research.

Another kind of comparison has been executed by identifying issues related
to the theoretical categories in the retrieved relevant studies. We illustrate how
the selected studies contributed to our framework validation as following: for
each retrieved article we present the main results, mapping them to categories in
accordance to the theoretical framework. Table 6.2 shows the main contributions
of the 37 identified studies, where an ’X’ is placed in correspondence to the
theoretical category they considered. The table has been sorted by computing
how many categories of our theoretical frameworks have been considered by the
study (column Count). Therefore in the highest part of the table there are the
studies which somehow discuss the higher number of concepts identified in the
early-stage startups framework.

Author (year) CAT1 CAT2 CAT3 CAT4 CAT5 CAT6 CAT7 Count Ref.

Sutton (2000) X X X X X X X 7 [13]
Kajko (2008) X X X X X X X 7 [18]
Crowne (2002) X X X X X X X 7 [10]
Coleman (2008) X X X X X X X 7 [29]
Coleman (2008) X X X X X X X 7 [27]
Coleman (2007) X X X X X X X 7 [2]
Camel (1994) X X X X X X X 7 [70]
Yo�e (1999) X X X X X X 6 [81]
Zettel (2001) X X X X X 5 [88]
Jansen (2008) X X X X X 5 [95]
Heitlager (2007) X X X X X 5 [3]
Deias (2002) X X X X X 5 [80]
Ambler (2002) X X X X X 5 [76]
Wood (2005) X X X X 4 [160]
Tingling (2007) X X X X 4 [77]
Taipale (2010) X X X X 4 [84]
Silva (2005) X X X X 4 [79]
Mirel (2000) X X X X 4 [92]
Midler (2008) X X X X 4 [86]

Table 6.2 – Continued on next page



www.manaraa.com

Chapter 6. Theoretical model 122

Table 6.2 – Continued from previous page

Author (year) CAT1 CAT2 CAT3 CAT4 CAT5 CAT6 CAT7 Count Ref.

Tanabian (2005) X X X 3 [33]
Stanfill (2007) X X X 3 [159]
Mater (2000) X X X 3 [91]
Kuvinka (2011) X X X 3 [85]
Deakins (2005) X X X 3 [89]
Yogendra (2002) X X 2 [87]
Wall (2001) X X 2 [96]
Su-Chuang (2007) X X 2 [162]
Steenhuis (2008) X X 2 [161]
Sau-ling Lai (2010) X X 2 [163]
Kakati (2003) X X 2 [35]
Himola (2003) X X 2 [68]
Häsel (2010) X X 2 [158]
Hanna (2010) X X 2 [94]
Bean (2005) X X 2 [97]
Kim (2005) X 1 [93]
Fayad (1997) X 1 [90]
Chorev (2006) X 1 [34]
Count 29 22 13 26 18 14 20

Table 6.2: Mapping literature into categories

According to our framework, only 7 studies, out of 37 (18.91%), discuss aspects
related to the overall software development process in early stage startups. The
remaining part of the studies is only partially covering the phenomenon described
by the framework. Looking at the results, we were able to extrapolate information
which confirmed the conceptualizations33, discussed in Section 6.3.

To emphasize which theoretical categories have been most neglected in the
current state of the art, we present the frequency of occurrences of each cate-
gory among the sample (Count row of Table 6.2). To provide the reader with a
better visualization of this information, we plugged these values directly into the
high-level framework, showing bigger blocks in correspondence of more discussed
categories and vice-versa (see Figure 6.4).

33Analysis of all the studies were conducted in pair. In case of conflicts researchers collabo-
ratively analyzed the underlined articles more in-depth.



www.manaraa.com

Chapter 6. Theoretical model 123

Figure 6.4: Framework validated through literature focus

We can see how the majority of the retrieved studies (29) mention issues
related to speed-up development which confirms, in fact, the importance of the
core category. On the other hand we can observe that only a limited number of
studies mentions results related to CAT3, CAT5 and CAT6. This suggests the
direction of possible future primary studies towards: the technical debt and its
future consequences on performance; aspects related to functionality and quality
of the first version of the product.

These results confirm the relevance of development teams as widely discussed
in the SE literature, here mapping 26 studies to CAT4 (team catalyst for devel-
opment). The importance of people has been widely discussed in other studies in
SE advocating for the need of empowering people, which is the element with the
greatest impact on software development. Furthermore, being humans non-linear
variables, they are unlikely to follow repeatable prescriptive methodologies. As
stated by Highsmith, “A drawback of each and every methodology is to expect
people to behave consistently over time, when is clearly not like that.” [171]. For
more detailed discussion about the importance of people the reader is referred to
some prominent authors: Cooper [177], DeMarco [178], Coleman [71], Valtanen
[50], Adolph [179] and Cockburn [180]. Especially in early-stage startups, where
the whole company overlaps with the development team, factors related to people
are without any doubt the most important ones (confirmed with the empirical
data of our case study, discussed in Subsection 6.6.5).

In addition to the theoretical framework proposed by Coleman previously
discussed in Subsection 6.6.1, in the next part of this subsection we present sim-



www.manaraa.com

Chapter 6. Theoretical model 124

ilarities and contrasts with other relevant studies selected with the SMS.
Starting from the concept of severe lack of resources, described in Subsection

6.3.1, many authors describe startups facing with inescapable constraints defined
by engineering/business concerns and constant time-pressure [70, 181] as also
shown in Table 5.7. Because of their young and inexperienced working conditions,
startups present limited resources in terms of management and strategic alliances
[13].

Crowne in [10] identifies four main stages of a startup’s lifecycle: startup,
stabilization, growth and maturity. Inexperienced practitioners operating in a
chaotic environment characterizes the first phase, where there is no strategic plan
for developing the product. But, moving towards the stabilization phase, the
product starts to be unreliable and requirements unmanageable. Consequently,
when startups move to the growth phase, they initiate structuring and controlling
processes, which are incrementally integrated in the development environment.
The maturity represents the moment when the company is ready to introduce
process improvement initiatives. This study profoundly corresponds to di↵er-
ent conceptualization of the theoretical framework. Starting from the minimal
and low-precision engineering elements, startups start to grow the accumulated
technical debt which requires fast integration of more structured and standard
processes overtime (discussed in the model presentation, Subsection 6.3.7).

Issues related to low-precision engineering practices during companies’ growth
are discussed in an experience paper by Ambler [76] where he reports the case
studies of two growing internet startups approaching an IPO. Despite the two
companies were facing business and team growth, attitudes against the introduc-
tion of processes to structure and model the system were evident. The need to
re-architect and redevelop the codebase lead the researchers to suggest a tailored
version of the RUP34. Nevertheless, even with the aid of CASE tools35, startups
failed in practicing engineering activities in view of eccesive lack of flexibility.
In fact, developers fast moved to simpler tools such as the whiteboard, where
they were able to provide input and insights, question assumptions, share past
experiences, and even talk about potential implementation strategies. In general
the development remained highly iterative, where project teams started to have
a little modeling and testing only when necessary. They didn’t take the serial
approach of completely developing and accepting the requirements model, anal-
ysis model and so on. This let them react swiftly and adapt rapidly according to
changes into their highly competitive markets. The researchers report “modeling

34Iterative software development framework based on sophisticated manage requirements,
component-based architecture, modeling, continuous quality verification and control changes
(more details available at http://www.ibm.com/developerworks/rational/library/1826.

html#N100E4).
35CASE tools are a class of software that automates many of the activities involved in vari-

ous engineering activities. See http://www.unl.csi.cuny.edu/faqs/software-enginering/
tools.html .

http://www.ibm.com/developerworks/rational/library/1826.html#N100E4
http://www.ibm.com/developerworks/rational/library/1826.html#N100E4
http://www.unl.csi.cuny.edu/faqs/software-enginering/tools.html
http://www.unl.csi.cuny.edu/faqs/software-enginering/tools.html


www.manaraa.com

Chapter 6. Theoretical model 125

was streamlined”, that is modeling what was needed and go straightforward to
coding, avoiding analysis paralysis.

The use of whiteboards in working environment is in support of the use of
well-integrated and simple tools. In both the startups studied by Ambler, doc-
umentation was minimal, finding the “sweet spot” to have just barely enough
tools and artifacts to meet their needs and no more. Generally, the use of keep a
simple and informal workflow, described in Subsection 6.3.5, endorses the use of
low-precision engineering practices which lead to speed-up development initially,
but with negative e↵ects on the accumulated technical debt of a minimal project
management (see Subsection 6.3.6) and consequently on the final company growth
(see Subsection 6.3.7).

Kajko-Mattsson et al. investigated a Swedish software startup company in-
volved in mobile applications [18], reporting the following issues: a lack of re-
quirements gathering process; release cycles and their length were not defined;
the releases and their scope were not planned; lack of control over the change
requests; lack of process control in terms of absence of any documentation to
track the status and progress of the process; defective releases in terms of lack
of testing; poor communication since the communication inside the company was
informal and not documented at all. In the same study they designed a process
improvement model, based on three main phases: Evaluate, Plan and Change.

During the evaluation phase Kajko-Mattsson et al. tried to establish the
development workflow status within the company, and the authors document
a status of chaos where any initiatives of quantitative methodology assessment
would have been a waste of time. Therefore, they applied a qualitative method-
ology approach to define a model of the release management process. In fact,
they moved towards the plan phase where the researchers decided to develop
a model to manage releases, introducing a process composed by: release scope
preparation, release planning, release development, system testing, acceptance
testing and release deployment. Despite the e↵ort spent from the researcher to
establish a development workflow, practices were not fully conducted even though
some marginal benefits have been reported: planned major release from four to
six months; planned minor releases from two to four weeks; encompassing urgent
corrective releases from one to five days. Regarding the previously mentioned
problems, only partial improvements have been achieved since the major obstacle
was to motivate employees to change their habits. With perfect hindsight the
researchers claim that understanding and adapting solutions by solving one prob-
lem at a time would have increased benefits. Then, despite the reported results,
start establishing simple and informal workflow aided the organization to move
from the stage of knowing nothing to knowing at least something about their
development process.

The integration of minimal project management during the development ac-
tivities can foster the control over development productivity and control the ac-
cumulated technical debt (see Subsection 6.3.6), but still with particular attention



www.manaraa.com

Chapter 6. Theoretical model 126

to the development workflow status within the company, designing specific and
tailored solutions.

In fact, prescribed development models such as SPI in startups are basically
ignored by startups, as discussed in [88]. To overcome the need of structure
and control to accelerate the development process, in his study, Zettel devel-
oped a “LIghtweight Process for E-business software development” (LIPE). This
lightweight development method integrates XP approach with ideas from the ar-
eas of software measurement for project control and process improvement as a
compromise between ad-hoc and more rigorous approach. LIPE, as argued from
the author, provides scalability of the development process with a certain degree
of flexibility, omitting parts of prescribed practices. Nevertheless, we couldn’t
retrieve any empirical evaluation of the study.

In [89], the author designed a new spiral methodology evolved during fieldwork
with a developer team that had limited resources managing innovative product
in volatile e-commerce environments. He proposes fast evolutionary approach
experimentation with flexible processes obtaining customer’s feedback as soon as
possible for continuous product improvement. Even in this case the model is com-
pliant with the nature of a random, ad-hoc and visionary product development.
In fact, evolutionary development approaches are typically more suitable for web
applications, as confirmed in [53]. Then the practices are oriented towards rapid
and iterative design with complete freedom to the developer team, enabled to
operate anywhere within the organization, according also to the category team is
the catalyst of development, discussed in Subsection 6.3.3.

Carmel reports in [70] the need of flexible and rapid development solutions
to shorten time-to-market, but even more important, the need of high-skilled
team developers, which heavily impact on speeding-up development (see Subsec-
tion 6.3.5). In fact, the author suggests that entrepreneurs need to look for a
well formed, skilled core development team and not just a set of product ideas
and features. Moreover the team must be empowered with full-stack and self-
organization settings with the flexibility of minimal bureaucracy. A studied com-
pany stated: “we didn’t need weeks or months of detailed modeling and docu-
mentation , but rather modeling the architecture a little and then either exploring
strategies by providing users with code or simply starting work on the actual soft-
ware itself”.

Eventually to focus on simple solutions, two other studies [96, 97] sugges
to “reuse the wheel, instead of reinventing it”, taking advantage of open source
software whenever it is possible, building systems quickly and e↵ectively as a
result. The author conclude stating that even though the principles in leading-
edge development processes are the same principles of yesteryear, the way in which
the fundamentals are applied has changed from prescriptive to agile solutions with
less concern to quality aspects, also confirmed in [91] and discussed in subsections
6.3.3 and 6.3.4.

Thus, by summarizing the comparison, we have found that most of the con-



www.manaraa.com

Chapter 6. Theoretical model 127

tributions of the studies are compliant with the behavioural model of the phe-
nomenon we provided.

6.6.3 Confounding factors from the literature

The purpose of this subsection is to identify which confounding factors need
to be taken into consideration when evaluating the theoretical framework. The
confounding factors are those variables which and have not been considered in the
model and might interfere with the theoretical framework positively or negatively
[103]. Even though there are no systematic procedure to identify confounding
factors, we report those that have been explicitly identified by the literature
review, that are related to: creativity, innovation, market type and application
type.

A prominent contribution investigating creativity and innovation in startups,
is presented in [3]. The study reports how development approaches oriented to
the product in the early-stage life-cycle, called fluid (see Figure 6.5), have main
impact to innovative solutions initially. After a while the need of structuring and
controlling the growing company size (along with transition and specific phases)
arises the need of project management activities and software processes for long-
term scalability issues.

Based on Figure 6.5, obtained by the model presented in [3], the horizon-
tal axis indicates the lifecycle stages of a startup (fluid, transition and specific),
whilst the vertical axis indicates for each development approach (product-oriented
and process-oriented) the level of innovation achieved. The study reports how
product-oriented development, in contrast with forced and mature process im-
position, gives degree of freedom to the development team, enhancing creativity
of developers and augmenting the innovation capability of the company in the
early-stage.



www.manaraa.com

Chapter 6. Theoretical model 128

Figure 6.5: Innovation model [3]

The empirical model we presented has been obtained from the transcripts
of interviews, where the theme of innovation only seldom emerged. However,
if innovative and creative factors were considered in the model, the integration
of results would have been straightforward, since the evolution of this model
is totally compliant with our assumption of CAT5 and CAT6. From product-
oriented development in the fluid phase to the process-oriented development in
the specific phase, the innovation confounding factor seems to behave initially
the same as the speed-up development (see detailed description in Subsection
7.5). Nevertheless, we were unable to ground these evidences in the GT data
even though they might present strict correlation with the choice of an early
product-development orientation with low-precision engineering elements.

Other two important factors, that are not grounded in our empirical data, are
related to: a. the requirements expected by a specific market sector (also called
market requirements in [2]); and b. the application type as reported in [13, 27, 29].
The main impact of those confounding factors is related to the adoption of flexible
and reactive solutions for the development process. In particular they refer to
the necessity of fulfillment of quality concerns that goes beyond scalability and
UX defined by the framework. Especially when requirements are rigidly imposed
or the application domain is well-known, providing low-quality products to final
users might determine the failure of a startup.

For example security in critical applications such as safety-critical systems
present quality concerns, which must be granted. But also minor risky application
domains such as e-commerce systems have high-impact factors for obtaining the
first customer reference, as discussed in [89, 93, 79]. This characterizes those



www.manaraa.com

Chapter 6. Theoretical model 129

applications, whose part of functionalities are already successfully implemented
in other software systems or whose failure might report serious financing or social
damages [182].Yet, limiting our context to early-stage software startups, which
typically develop first cutting-edge product in beta versions, partially mitigates
the high-quality demands of users.

To understand how to obtain processes in accordance to a set of customer
needs, correlating the proper levels of customers’ satisfaction, we introduce the
Kano model, described in [4] and extensively studied in product development. As
shown in the Kano model in Figure 6.6, users preferences can be classified into
four categories: basic (below the respective curve), excitement (above the curve),
performance (is an unidimensional area represented by the respective segment)
and indi↵erence (represented by a light-gray square) areas.

Figure 6.6: Kano model [4]

The basic area represents the space where customers are dissatisfied if those
must-be functionalities are not met. This is the case of similar functionalities
already implemented in the current market with well-known solutions. The per-
formance area represents the space where customers’ satisfaction is proportional
to how many of functionalities are implemented. In the indi↵erence area the
customer does not really care about the functionalities: the satisfaction remains
invariant. This represents the case where startups have not (yet) achieved the



www.manaraa.com

Chapter 6. Theoretical model 130

right product/market fit. Finally, the excitement area represents the space where
customers will be more satisfied if functionalities are implemented, but not dis-
appointed if they are not implemented. This is the case of extremely innovative
product development.

Well-known domains such as e-commerce applications or other “quality critical
products” belong to the basic area, where if a quality concern such as security
in bank transfer services is missing satisfaction of customers will be profoundly
a↵ected. But as discussed, in early-stage startups that typically develop first
beta products, developers usually deal with cutting-edge technologies. Those
innovative solutions, if in the right market, are likely to belong to the excitement
area, where satisfaction can hardly be negatively a↵ected by faulty products. In
fact, in the theoretical framework (see Section 6.3), minimal functionalities and
less concern about quality aspects have low-impact on customers’ satisfaction,
supporting startup’s ability to mainly focus on speed-up development. Moreover
operating in the excitement area is fully compliant with an evolutionary approach
and minimal functionalities since from the first product released to the market,
it is unlikely to lose users because of high-quality demand.

Nevertheless, this aspect profoundly undermines the generalizability of the
theoretical model according to the theory presented in Subsection 6.3.4, in par-
ticular CAT3. Therefore, future studies within wider startups’ context are advis-
able to extrapolate insights from those situations where quality concerns cannot
be postponed or externalized.

Finally, also the experience of team-members is considered as an important
confounding factor. Since only little evidence has been gathered during the inter-
views, “lack of experience” was not considered as a sub-category in severe lack of
resources. Notwithstanding, according to [10], startups at the beginning rely on
clever, but inexperienced developers (see Subsection 6.3.2). In fact, having team-
members with deep experience is a “double-edge sword”, as discussed in [81].
From one hand experience might quickly provide structure and maturity to the
development process, from the other it might cause huge challenges in managing
human resources in view of the fact that self-confident overachievers will almost
inevitably clash. Consequently the team management requires higher control and
coordination activities that inevitably hinder the flexibility of the development
environment at the beginning, that is essential in early-stage startups as discussed
in subsections 6.3.2 and 7.5.2. Accordingly, also Coleman in [2, 29, 27] states that
the operating strategies towards “minimum processes” in startups is not a matter
of poor knowledge and training, but rather it is the necessity of operating with
solutions that let the company move faster.

Nevertheless, since the amount of the results did not allow “the lack of expe-
rience” to be in the theoretical framework (in view of the fact that not enough



www.manaraa.com

Chapter 6. Theoretical model 131

data were identified 36), this confounding factor requires further investigation.

6.6.4 High-level relations validity

In this subsection we validate the most important causal relations presented in
our model by attesting their correctness with a quantification of empirical trends
observed in the data37. In fact we identified some trends and recurrent patterns
which we tried to synthesize in this section by thoroughly analyzing the complete
set of data obtained from the case study and the theoretical model (depicted in
Figure 6.2). We illustrate our observations aided by simple statistical methods,
which provides to researchers an additional tool to validate our model supported
by further companies’ data.

As previously discussed when presenting the high-level framework (see Sub-
section 6.2), the most essential feature that startups aim to achieve is high speed.
This is reflected in the model (see Figure 6.1), as shown below in the detail of
high-level framework (Figure 6.7).

Figure 6.7: High-level framework core category network

The core category (speed-up development) is influenced by: the degree of qual-
ity concerns (contributes to the e�ciency); the undertaken development approach
(provides e↵ectiveness); and finally the intrinsic characteristics of the team (guar-
antee performance).

36A category is formed if the codes are representative of more than the 70% of the analyzed
transcripts.

37This is applied according to the fit factor discussed in Subsection 4.3.6 within the static
assessment process.



www.manaraa.com

Chapter 6. Theoretical model 132

Before starting the evaluation of the impact of the three categories on speed-
up development, we grounded in the interview transcripts the fact that those
relations were characterized in terms of performances38:

• The team enhanced the overall performance of the software development.
In fact, recalling that startups deal with severe lack of resources, the team
members are the company’s main assets. They develop software with no
need of formalities and structures, left to the team’s own capabilities to
e�ciently develop the product. Moreover, the e↵ectiveness is granted by
continuous advices given by mentors and by a management style oriented
towards self-organization, full-stack, and multi-role settings39 (described in
Subsection 6.3.2 and confirmed, among others, by Sutton in [13]).

• The evolutionary approach enhanced the e↵ectiveness in implementing the
right functionalities. In fact, this approach improves the company’s capa-
bilities to adjust the trajectory of product development (see the concept of
pivoting in Appendix A.2.4).

• Since product quality has low priority, the development was focused only
on implementing a limited number of suitable functionalities, enhancing its
e�ciency. In fact, an essential prototype (MVP) does not require to comply
with heavy quality constraints, enabling the team to quickly implement
functionalities, ready to be validated by final users40 (see Subsection 2.3.3).

An optimal combination of these three categories enables startups to ship code
extremely quickly. However, the price that startups have to pay for achieving such
high speed is related to the extent of the accumulated technical debt, which will
finally contribute to hinder performance in later stages41. This is reflected by the
right-hand side of the high-level framework, here extracted in Figure 6.8.

Figure 6.8: High-level framework- technical debt network

38TIme-to-market was the main concern, as confirmed by the state-of-the-art and state-of-
practice (see Subsection 5.1.3 and Section 6.5).

39Note that the importance of a skilled team for development performance is expressed in
many studies such as [32, 171].

40Note that nonfunctional requirements, such as a good level of UX, need to be achieved (see
Subsection 6.3.4 for more details).

41See subsections 6.3.6 and 6.3.7 for more detailed explanation.



www.manaraa.com

Chapter 6. Theoretical model 133

Accordingly, by analysing the data of the 13 companies collected with the
empirical study, we observed two distinct trends which further empower the above
illustrated relations:

1. The more a capable team42 with few quality constraints uses an evolutionary
approach, the faster the company releases the product.

2. The faster the company releases the product, the larger the degree of ac-
cumulated technical debt43.

To assess these hypotheses we defined three measures reflecting the theoretical
model:

• Execution speed : a metric that represents the development speed of the
startup during di↵erent phases of the first release, computed by means of
a weighted average speed for each phase. It was obtained by analysing
interview transcripts looking at subcategories of Speed-up development.

• Technical debt : a metric that represents the extent to which processes are
controlled, structured, planned and documented by means of engineering ar-
tifacts and practices. It has been computed by means of a weighted average
of the debt accumulated in each development phase, observing subcategories
of accumulated technical debt with consequences on the startups growth.

• Potential capability : a metric that represents the degree to which each com-
pany reflected the capability of reaction and flexibility to the dynamic envi-
ronment during the development process, given by the three categories that
(theoretically) mostly a↵ect speed-up development (see Figure 6.7).

We quantified these measures for each company involved in our empirical
study by defining score metrics based on a set of rubrics and evaluating startups
accordingly, through an analysis of interview transcripts, codes and questionnaire
results. The complete statistical procedure and provided rubrics to quantify the
measures are illustrated and discussed in Appendix A.5.

For each dimension the scores have been computed in the range between 1
and 5, where the meaning of boundary values are illustrated44 in Table 6.3.

Dimension Boundary values
Execution speed 1 = very poor, 5 = extremely high
Potential capability 1 = very poor, 5 = extremely high
Technical debt 1 = very low, 5 = severely high

Table 6.3: Definition of boundaries for numerical values

42The team capability is evaluated according to the characteristics presented in CAT4 (see
Subsection 6.3.2).

43The debt here is considered regardless of context-specific debt mitigation factors and tactics.
44See Appendix A.5 for the complete rubric.



www.manaraa.com

Chapter 6. Theoretical model 134

As expected, the 13 startups which participated in this study received general
high evaluations for speed, capability and a relatively high amount of accumulated
technical debt, as shown in Table 6.4.

Company Execution
speed

Potential
capability

Technical
debt

C1 4.022556391 3.928571429 3.052631579

C2 3.977443609 3.134920635 3.180451128

C3 3.691729323 2.261904762 2.601503759

C4 4.17699115 4.246031746 3.362831857

C5 4.407079646 3.293650794 3.14159292

C6 3.973451327 2.579365079 3.061946903

C7 3.778761062 2.936507937 3.03539823

C8 4.442477876 4.484126984 3.362831858

C9 3.938053097 3.611111111 2.796460177

C10 3.659574468 3.531746032 2.085106383

C11 4.732290708 5.000000000 3.451701932

C12 4.150442478 2.460317460 3.115044248

C13 3.422812193 2.063492063 2.973451327

Table 6.4: Quantification results of execution speed,technical debt and potential capability

We conducted statistical tests using the analysis of variance to assess the ex-
istence of relations between the dimensions. First we defined two null hypotheses
(H0): H01 = Startups do not release the product faster when a capable team
adopt a more evolutionary approach AND with less quality constraints ; H02 =
The execution speed does not increase the amount of accumulated technical debt.
Then we tested H01 and H02 with an one-tailed test using Pearson’s product mo-
ment correlation coe�cient45, with positive association analysis, fixing the level
of confidence to 95% which means we reject H0 in case the p-value is lower than
0.05.

We conclude that, in our sample:

1. Higher values of Execution speed are strongly associated46 with higher values
for Technical debt.

2. Higher values of Execution speed are strongly associated47 with higher values

45To perform the Pearson’s correlation we verified two assumptions: a) data is normally
distributed; b) data is on interval scale (see Appendix A.5.3 for more details).

46Clear statistical significance, p-value: 0.002073.
47Clear statistical significance, p-value: 0.004549.



www.manaraa.com

Chapter 6. Theoretical model 135

for Potential capability.

The variables are plotted below together with a regression line in (see Figure
6.9).

(a) Execution speed and Technical debt

(b) Potential capability and Execution speed

Figure 6.9: Measures - Linear regression



www.manaraa.com

Chapter 6. Theoretical model 136

Since the numerical scores have been derived by the categories and subcate-
gories of the theoretical model, the most important implication of these statistical
results is a confirmation that, for the 13 companies we inquired in the study, the
relations between theoretical categories of the high-level framework (see Figure
6.1) are valid. Additionally, the adherence of empirical results to the theoret-
ical framework contributes to attest that the grounded theory study has been
correctly conducted, i.e. the theory actually emerged from the underlying data.

Observe that we are not able to extend the above numerical results to other
startups out-of-sample. However, throughout the entire document - especially in
Appendix A.5 - we provided enough detailed processes, evaluation tables and raw
data to enable other researchers to reproduce both theory generation and theory
validation with new data-points.

The validation has been performed on the most critical causal relationships of
the model. According to the paradigm model (see Subsection 4.3.5) those are the
causal condition which are linked to the core-category. There are four high-level
relationships48 which have not been validated using numerical methods. However
their correctness has been verified with a cross-analysis of the extant literature
and by attesting the causal relations among codes and categories, through axial
and selective coding processes described in Subsection 4.3.4.

6.6.5 Engineering elements and categories

Finally, to provide a concrete example of how the model can be used, we show
that the engineering elements mentioned by respondents in the survey (see Sub-
section 5.2.3) can be mapped into the theoretical categories of the framework.
Based on the score assigned with the follow-up questionnaires by practitioners to
engineering elements, we create a ranking of the theoretical categories which most
contribute to the core category speed-up development. To produce such ranking
we followed the process explained below.

First we mapped the engineering elements, presented in Table 5.15, to a spe-
cific abstract category of the framework.

To compute the score of each category, we executed the following steps:

• Extracted engineering elements rated as very and extremely useful from
questionnaires’ repertory grid results (see Table 5.15).

• Extracted the list of engineering elements rated as most useful with a perfect
hindsight from questionnaires’ results.

• Assigned arbitrary weights to highlight the contribute to the score given to

48CAT7 ! CAT4; CAT7 ! CAT3; CAT4 ! CAT5; CAT3 ! CAT5. These relations,
according to the paradigm model, represents intervening conditions and action/interaction
strategies.



www.manaraa.com

Chapter 6. Theoretical model 137

elements49 marked as very useful (w
v

= 0.2), extremely useful (w
e

= 0.4),
and with perfect hindsight (w

h

= 1).
• Counted the frequency of occurrence in the result for each element and
multiplied it by the weight associated with the element type.

• Mapped each engineering element from the questionnaire to a specific cat-
egory of the theoretical framework (see Table A.24).

• Finally computed the score of each category by summing up the contribution
of single elements which belong to it.

The table that shows the results of this process is presented in Appendix
A.4, TableA.25. This procedure allowed the researchers to further refine the
categorization and translate low-level concepts in high-level abstract categories,
which have been used as starting point to perform the ranking of categories. Thus,
this process contributes to attest the validity of relations between categories and,
at the same time, provides an idea of which categories are perceived as most
significant to shorten time-to-market.

All the engineering elements which have been rated in the questionnaire, con-
tributed to a certain degree to the software development process since they have
been explicitly mentioned during interviews. However, in this analysis we fo-
cused on those elements rated as very or extremely useful in support of speeding
up development. Figure 6.10 shows the final outcome of the ranking of categories
process described in Subsection 4.3.6, displaying the name and the score of the
top categories50.

49It could be very interesting to analyze and understand elements which are perceived as time-
wasting and the rationale behind it. However, due to time-e↵ort constraints, those elements
have not been considered since we aim to understand which elements are perceived as strongly
positive among practitioners.

50The minimum threshold on the score, for a category to be displayed, has been arbitrarily
set at 1 to avoid including meaningless long lists.



www.manaraa.com

Chapter 6. Theoretical model 138

Figure 6.10: Ranking engineering elements

According to practitioners, the most highly rated categories, which contribute
to speed-up development, are activities and practices incorporated under the find
the product/market fit quickly category of our framework (see Subsection 6.3.3),
followed by the use of well-integrated and simple tools, skilled developers and
multi-role and full-stack engineers. It is important to note, among others, how
elements and categories related to the team capabilities are regarded as very
important by practitioners. This confirms the primary role of the team (CAT4)
in contributing to the primary objective of startups - shortening time-to-market.

With this last step we further evaluated the framework’s explanatory power
by incorporating low-level concepts extracted from the questionnaire responses
into abstract categories of the model.

6.6.6 Summary of validation

The causal relations - represented with directional arrows in the framework of
Figure 6.1 - emerged from the GT process of selective coding in interview tran-
scripts. In particular, at high level, we were able to identify nine causal relations
among categories. To validate the theory which emerged from the framework, in
the sections above we used di↵erent techniques. As suggested by creators of GT
[128] and remarked in Coleman’s studies [27, 151], we focused on the validation
of the most important relations for the model. In particular, in Subsection 6.6.4
we attested that the combination of CAT2, CAT3 and CAT4 - the categories
which are converging to the core category - contribute to speed up development
(see Appendix A.5.1).



www.manaraa.com

Chapter 6. Theoretical model 139

Furthermore we validated two more non-obvious causal relations which are
at the foundation of the theory: the relation between speed-up development and
accumulated technical debt (CAT1 ! CAT5); and between accumulated technical
debt and initial grow hinders performance (CAT5 ! CAT6)51. Finally we left
open to other researchers the possibility of performing a further validation of the
causal relations with additional companies.

Summarizing the overall results of the model validation, the most important
achievements are listed below:

• We proposed a theoretical model describing software development in early-
stage startups, which is strongly grounded in the underlying empirical data
(provided in Appendix A.4.3).

• We generated a formal theory and discussed its implication, answering to
RQ-2.

• We discussed how the model is compliant with the GT framework presented
by Coleman, and with Brooks 1986’s forecasts about software development.

• We observed that the contextual characteristics of startups identified in
the literature (themes) can be easily accommodated within the theoretical
categories of our framework.

• We analyzed which categories received most attention in the literature, and
suggested possible new area of interest for future studies.

• We executed an in-depth comparison between the results of other authors
and the implication of our model, discussing commonalities and identifying
discrepancies.

• We attested the correctness of the theory generation procedure by testing
the model against the data which generated it attesting that the causal
relationships were correctly extrapolated from the empirical data.

• We verified causal relations between subcategories of the detailed framework
by checking their correctness in the interview transcripts.

• Finally, by trying to fit engineering elements independently reported in the
follow-up questionnaire by practitioners into our theoretical model, the the-
ory underwent a further validation, demonstrating to be capable of handling
low-level concepts expressed in the follow-up into high-level abstracted con-
ceptualizations.

6.7 Generalizability of the theory

The conceptualization of complex systems in a theoretical framework is an ap-
proximate representation of the actual underlying reality [2]. The case study,
from which our conclusions are generated, has been performed in a cross-sectional
analysis of newly created web startups in the time frame that goes from the idea

51See Appendix A.5.2 for detailed explanation.



www.manaraa.com

Chapter 6. Theoretical model 140

conception to the first public release. Furthermore, in all the companies in-
quired, the most urgent priority was releasing the product as soon as possible
in a context characterized by high uncertainty52. Despite GT forces researchers
to abstract from specific details, the above-mentioned elements could have influ-
enced the emerging theory. However, the validation of the theory (see Section
6.6), performed within the same context, provided evidence that in these specific
environment the results are likely to be adherent to facts.

Particularly, since a number of companies inquired in the study have a mobile
part of the application, the majority of results can be extended with a good degree
of confidence to startups operating in the mobile application sector too. Further-
more, we conducted an interview with a company (C13) which main product was
a desktop application. Even in this case, with some low-level di↵erences related
to the release policies, the framework proved to be correct.

Moreover, although the questions that characterize our investigation, are fo-
cused on the development activities before the first open release of the product,
at the time of the study most of companies had already released it. This allowed
us to obtain hindsight contributions from CTOs/CEOs, who started facing the
drawbacks of the initial lack of structures trying to absorb the technical debt.

Finally, we believe that by analyzing web and mobile companies (which repre-
sent the majority of today’s startups [25, 22, 26]), important aspects, captured in
the behavioral model, can be extended to a large portion of early software startup
businesses. In particular we infer that the high-level framework is su�ciently ab-
stracted to capture theoretical patterns common to most startups, whilst the
more detailed framework might not be perfectly suitable for all the domains.

The generalization of the theory has been supported by validation of the
theoretical framework with Coleman’s studies (see Subsection 6.6.1), who has
investigated startups with extended operating history. Moreover we considered
studies in small companies in view of some similarities (see Appendix A.2.2). As
a result, more mature startups and small companies reveal an absence of general
control and structures with heavy lack of processes and basic documentation. In-
deed, severe lack of resources seems to cause conditions of uncertain development
environment, which could be a starting point for a broader generalization of the
model to these kind of companies.

52Refer to subcategory uncertain conditions (CAT2) in Subsection 6.3.3



www.manaraa.com

Chapter 7

Dynamics and evolution of startups

7.1 Overview

This chapter describes the complexity of operational dynamics and the evolution
of startups after the first product release. The explanatory analysis is based on
empirical data collected during the case study, which has been evaluated using
well-known models. In this chapter we aim to address RQ-3, i.e. What devel-
opment strategies can be adopted by startups with the aim of facilitating future
growth?

In Section 7.2 we draw a theoretical baseline by comparing traditional software
development methodologies in contrast to the approach undertaken by early-stage
startups. In Section 7.4 we propose a life-cycle model for early-stage startups,
while in Section 7.3 we discuss how complexity of the startups’ domain influence
the modus operandi in software development. Finally we discuss an evolutionary
model analyzing the consequences of the accumulated technical debt on the post-
release performances and we propose a structured mitigation strategy for the
performance drop-down (see Section 7.5). Findings are summarized in Section
7.6.

7.2 Early-stage startups and methodologies

In this section we compare traditional development methodologies with the soft-
ware development approach undertaken by early stage startups. We aim to set the
theoretical basis to understand which methodology could be adopted to control
the initial chaos when the company is more mature. This will draw a conceptual
baseline which is used throughout the chapter to address the RQ-3.

So far we referred to startup organizations as reactive and flexible in nature
since they are able to change market and business orientation with a fast exe-
cution. But from an operative perspective what makes startups be reactive and
flexible is the easy adaptation of the development processes overtime (flexible
activities easy to change) and the partiality of their approach (lack of complete
adoption of methodologies), as discussed in Section 6.3. This enables practition-
ers to operate with a large degree of freedom in order to prioritize only essential

141



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 142

project management activities, as discussed in the Section 6.5. In fact, as pre-
sented in the results of mapping study and grounded theory most of the startups
operate with development approaches converging to the Lean Startup methodol-
ogy, whilst still presenting chaotic and unpredictable workflows.

Figure 7.1 shows a bi-dimensional plot which considers the dimensions of
flexibility and partiality of well known development methodologies compared with
early-stage startups.

Figure 7.1: Partiality and flexibility, inspired by [5]

Flexibility represents the degree to which development workflows and prac-
tices can be tailored whilst partiality represents the extent to which development
workflows and practices cover all the engineering activities, with a complete de-
scription of their implementation. The figure has been adapted from a study
performed on agile methodologies [5], adjusting it in face of our empirical data.
The figure helps the reader in understanding how early-stage startups belong to
the region of flexibility and partiality between lean startup methodology (with a



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 143

little area of overlapping) and the informal code and fix approach1.
With Figure 7.1 we don’t aim to explain all the detailed relations among well-

known development strategies, but rather to provide a means to perform visual
comparison with existing methodologies in order to motivate the need of a more
in-depth analysis of adopted operational strategies in early-stage software star-
tups. Among the di↵erent approaches, the most prescriptive and rigid practices
are presented by the Serial rigorous area, which refers to those detailed method-
ologies which provide practices to follow in all the engineering activities within
well-specified conventions (CMMI, RUP, PSP, DSDM, . . . ).

By contrast, what emerged from previous studies is that more mature star-
tups are keen towards the implementation of some Agile methodologies which are
generally more in line with the dynamic contexts (discussed in Chapter 3). How-
ever in the early stage of the development (before the beta) we observed that
almost none of the Agile practices are actually adopted by practitioners, such as:
limiting the work in progress; visualization of the workflow with monitoring and
measuring. However some authors suggest that, if the company eventually grows,
it will adopt some ad-hoc version of Agile methodologies [2, 84, 85].

In term of flexibility and partiality, the closest area to early-stage startups
is the Lean Startup methodology [7], partially discussed in Background (Section
2.3.3) and Appendix A.2.5. In fact, as reported in Subsection 6.6.5, practition-
ers rated elements belonging to the category find the product/market fit quickly
- which subcategories express concepts similar to the principles of Lean Startup
methodology - as the most useful engineering items for speeding up software de-
velopment. In particular they referred to fast release cycle based on minimal
functionalities, associated with the concept of minimum viable product (MVP).

7.3 Complexity and chaos in startups

Moving faster and handling of disruption2 characterize the daily operating en-
vironment in startups. To understand the reasons of such scenario and obtain
insights of adopted solutions we need to introduce3 the Cynefin framework [6].

A good model, to conceptualize the reasons behind the adoption of low-
precision development strategies by startups, is the Cynefin framework described
by its author, Dave Snowden, as a “sense-making model”. It is a model used to
support decision-making by understanding the domain in which domain organi-
zations are operating. Thus, an area of the framework delineates the strategies

1Code and fix is the reckless implementation of features and fixing of emerging problems to
have the product working as soon as possible.

2Disruptive technology is intended as an innovative product which eventually create new
markets or value networks better than large bureaucratic companies, as discussed in [24]. This
characteristic makes startups an unique world of complex dynamics.

3This was only a brief introduction necessary to understand the remaining subsections.



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 144

to adopt in decision-making in order to obtain desirable results.
Figure 7.2 represents the Cynefin framework. It has four main domains:

known, knowable, complex and chaos4. At the right-hand side of Figure 7.2 there
are represented those domains defined as order area, and the left-hand side do-
mains defined as unorder area.

Figure 7.2: Cynefin framework [6].

The order domain is composed by known and knowable areas. The known
area represents the world of self-evident cause-e↵ect relationships. This is the
domain of process reengineering, in which knowledge is captured and embedded
in structured processes to ensure consistency (an example might be the devel-
opment of a basic text-editor, whose technology solutions are easily retrievable
and well-documented). As shown in Figure 7.2, in this domain practitioners need
to sense what are the needs, categorize through understanding possible solutions
and respond by providing the best solution. The knowable area represents the
world of complicated cause-e↵ect relationship, where expertise are involved to
analyze data and then take decisions in accordance with interpretation of that
analysis (an example might be the development of a team management tool, in
this case an expertise of team management is required to understand the func-
tionalities needed). As shown in Figure 7.2, in this domain practitioners need
to sense and analyze by breaking complex topics in smaller parts and gaining a
better understanding of them to finally respond.

The unordered domain is composed by the complex and chaotic areas. The
complex area involves cause-e↵ect relations defined by emergent patterns, which

4A fifth domain is presented as the domain of disorder, which is explained later in this
subsection.



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 145

can be perceived but not predicted; this phenomenon is named retrospective co-
herence. As shown in Figure 7.2, in this domain practitioners need to probe first
in order to explore the area, obtain sense and finally respond. Within this space,
structured methods would try to seize upon such emergent patterns codifying
them into defined procedures, facing with new and di↵erent patterns and thus
managing them with an improper strategy. By contrary, relying on experts opin-
ions, which are based on historically stable patterns of meaning, will su�ciently
prepare researchers to recognize and act upon unexpected patterns. The only de-
cision model viable for this complex region is probing in order to make potential
patterns more visible before taking any decision (an example might be the devel-
opment of a transportation management system in the harbor of New York city,
where solutions can be retrieved only by analysis of previous measured executions
of the system within that geographical area).

While in the previous known, knowable and complex domains, relationships
between cause and e↵ect were visible, the chaotic space involves no such perceiv-
able relations instead. The turbulence of this area makes any attempt of analysis
or waiting for patterns to emerge a waste of time. The only possibility to make
decision in this space is to act as quickly and decisively as possible in order to
sense immediately the reaction to that intervention and respond to it accordingly.
Unlike the other domains the chaotic space is only temporary since structures and
patterns naturally emerge thanks to an evolving operating history. Solutions in
this domain are mainly oriented to code and fix approach or partial and flexible
management practices (as discussed in Section 7.2). As shown in Figure 7.2, in
this domain practitioners need to act first by means of e�cient practices that can
create a first attempt, obtain sense and finally respond.

The domain of disorder is where decision makers have conflicts, looking at
the same situation from di↵erent points of view. When needed a consensus, the
disordered domain has to be reduced in size in order to understand the nature of
the situation and the most appropriate response.

7.3.1 Cynefin dynamics in startups

In this subsection we present in which domain startups operate, answering the
RQ-3.1. Starting from the ordered systems, we will move towards to the un-
ordered systems characterizing the domains in face of the software startups de-
velopment environment. Ordered systems assume that by means of best and good
practices, we can derive or discover general rules or hypotheses, which can be em-
pirically verified and by which one can create a body of reliable knowledge, able to
be developed and expanded. But as revealed from our findings, this assumption
does not hold in the arena of early-stage software startups.

The companies we investigated and primary decision-makers in their startups
know this: no matter how much they might like things to be ordered, they know
that complex factors are always dominant (see Section 6.5). Indeed, according



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 146

to Snowden [6], the best option is to recognize and appreciate the freedom of
the unordered domain, stopping applying methods designed for order and instead
focus on legitimate methods that work well in unordered situations.

Startups managers who try to have rigorous control on the development strate-
gies might be reconducted to an example reported by Tom Stewart in [183], de-
scribing “[. . . ] a group of graduates were asked to manage a playtime of a kinder-
garten. They planned, and rationally identified objectives, determining backup
and response plans. Trying to order children’s play based on rational design prin-
ciples, they achieved chaos instead. Meanwhile experienced teachers allowed a
degree of freedom at the start of the session, and only then, they intervene to
stabilize desirable patterns and destabilize undesirable ones”.

Comparing this simple example to development in startups it is clear that in
a dynamic and constantly changing environment, it is possible to provide high-
guidelines in the unordered domain but not to assume order with strict process
definition. It is not possible to consider reductionist approaches to problem solv-
ing since every intervening factor (e.g. a developer falls ill) changes the nature of
the system. As a result, engineers need to allow a degree of flexibility in order to
obtain incremental improvements and stabilization of emergent patterns.

Methods, tools, and techniques of the known and knowable domains, defined as
rigid and prescriptive from software engineering, do not work in software startups.
Instead, flexible and reactive methods, designed to stimulate patterns to emerge,
increase the number of perspectives and solutions available to a decision maker.
Nevertheless, it is not by chance that software startups are more disruptive than
established and bureaucratic companies. Moving from complex to chaotic spaces,
software startups open up new possibilities of creation, generating the condition
for innovation. This dynamic is named Divergence-Convergence [6], and it is one
of the many movements described by the Cynefin framework.

Figure 7.3: Cynefin dynamics [6].



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 147

The boundary between chaos and complex spaces is a gradient, where there
is always room for interpretation, since there is not an easy way to control when
or where one crosses it5.

Disruption and instability in such area is a natural approach, which can be
managed more or less carefully. In this regard, software engineers in startups
cannot impose ways of fitting reality into their existing models within unordered
domain because those models would be already outdated. Therefore, startups
live in between the chaotic and complex regions. An interviewee claimed: “We
used the scrum board, but when opportunities came out we didn’t apply any pro-
cess anymore, and go straightforward to implementation to take advantage of the
hype.” Despite Agile practices appear to be suitable to embrace changes, when
the organization crosses from the complex area to the chaotic border, those prac-
tices are often ignored to accommodate the need to release the product to market
as quickly as possible. In conclusion, given the Cynefin model, we were able to
explore the part of chaos and complexity where startups operate. As claimed
by Snowden, the chaos zone is a fertile territory for innovation, where startups
take advantage everyday from disruptive ideas [6]. Despite the need to face the
accumulated technical debt when the organization start growing (see Subsection
6.3.6), by crossing between the areas of chaos and complexity, they can start
adopting some high-level guidelines to limit the damage in future growth. The
e↵ects of operating in this domain and possible solutions will be explained in the
next subsections.

7.4 Early-stage startup lifecycle

In order to target the most suitable engineering strategies in startups at di↵erent
stages of their evolution, it is worth distinguish between di↵erent activities carried
out in di↵erent phases. However, despite many attempts to describe the lifecycle
of startups can be found in the literature (see Appendix A.2.6), we were not able
to identify any peer-reviewed model fine grained around the early-stage from a
software development perspective. For this reason we extracted an early-stage
startup lifecycle from our case study data.

A thorough analysis of the case study results revealed a number of product-
related events which typically occur chronologically to startups in the early-
stages6:

• First idea conception (E1) - the starting point where a first product idea is

5“As a shallow river, anyone at any place can go through the river boundaries. But still it
is easy to tell when one has crossed it because one’s feet get wet” [6]. The presence of “shallow
rivers” encourages startups to cross over the boundary as much as possible, but still retaining
the capacity to monitor and intervene.

6We limit the life-cycle to the time-frame where we have enough empirical data.



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 148

conceived7.
• Start working on product idea (E2) - the founding team starts to work on
the idea realization.

• First draft of prototype (E3) - the first prototype of the product is available
for internal proof-of-concept.

• Private alfa-release to closed group (E4) - a basic version of the product is
released to a restricted group of individuals8.

• First public open release (E5) - the first version of the product is made
publicly available to potential real customers.

• Foreign element (E6) - an external element triggers the growth of new
features request, number of users or company size. This event typically
causes a loss of initial performances when the increased complexity faces the
accumulated technical debt. This event can be mapped to the theoretical
category Triggers for team and user growth, which belongs to CAT6 in the
model.

• Begin performance recovery (E7) - when the company takes action to control
the initial chaos, the performance starts to be recovered.

Afterwards we mapped the occurrence of the above-mentioned events to the
status of the companies which participated to our case study, providing an initial
idea of the stage of each startup. Table 7.1 shows a X mark where, at the time
of the interview, the specific event E occurred, according to the perception of the
respondent.

E1 E2 E3 E4 E5 E6 E7
C1 X X X X X X -
C2 X X X X - - -
C3 X X X X X X -
C4 X X X X X X X
C5 X X X X X X -
C6 X X X X X - -
C7 X X X X X X -
C8 X X X X X X X
C9 X X X X X - -
C10 X X X X X X -
C11 X X X X X X X
C12 X X X X X X -
C13 X X X X X X -

Table 7.1: Companies and lifecycle events

It can be observed that most of the startups9, experienced all the events up to

7Typically the idea conception does not happen at a precise instant of time but is rather
over a period of time, more or less extended.

8The private alfa can be made available online to private group of users or simply distributed
to close group of friends and early adopters.

9C2 planned to release the product to the open beta of the product some weeks after the
interview.



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 149

E5 (first public open release). Ten startups experienced a loss of performance trig-
gered by E6 (Foreign element), and three of them overcame the initial di�culties
and were improving performance after E7 passed (begin performance recovery).

The collected information were used to depict a timeline representing the
early-stage lifecycle of startups (see Figure 7.4), mapping the status of the com-
panies interviewed according to Table 7.1.

Figure 7.4: Lifecycle model for early-stage startups

A label associated with relevant time-intervals is shown on the upper part of
the model. For instance, the period of time between E2 (start working on product
idea) and E5 (first public open release) is marked with the label time to market.
Following, in the time between E5 and E6, startups typically iterate and improve
the product to achieve a better product/market fit (hence adjust product), and
between E6 and E7, where most of the startups we interviewed belong, they
usually experience a performance drop-down. For each of the phases, depicted in
Figure 7.4, companies have di↵erent priorities.

7.5 Evolutionary model

E↵ects of operating continuously in a chaotic and complex domain with uncon-
trolled and unstructured development strategies, lead organizations to experience
a temporary drop-down in performance which can be explained by making use of
the Satir Change Model [184].

The Satir change model10 describes performance behaviour through the defi-
nition of five stages (see Figure 7.5): status quo, resistance and chaos, integration
and practice and new status quo.

10The Satir change model is a standard model used to deal with changes in the state of
complexity and it consists of five pre-selected and sequenced stages.



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 150

Figure 7.5: Satir model

Observe that the first time period, here referred with the label status quo,
corresponds to the entire time-span up to E7 of the early-stage lifecycle model
previously presented in Figure 7.1. What follows the event E7 is here divided in
three stages (resistance and chaos, integration and practice, and new status quo),
corresponding to restore performance in the lifecycle of Figure 7.1.

For the sake of brevity, moving towards the di↵erent stages, the model is
approximated with its general trend, even though in reality the curve might be
more similar to articulated oscillation as presented in Figure 7.5. In the rest of this
section we describe each stage separately in relation to the early-stage startups’
context. Within the context of early-stage software startups, the first phase -
named the “status quo” in [184] - represents the time-window where startups are
product oriented. They lead their e↵ort and performance in the implementation
of one or more products, neglecting any established process, as reported also in
[3] and confirmed by our empirical results.

Despite the initial positive performance level, as discussed in the theoretical
model (Chapter 6), speed-up development generates technical debt. When the
product start scaling, the weakness and vulnerability of structures and workflows
arise. In fact, at the time the foreign element occurs (see Figure 7.5), the drop-
down in performance is inevitable, leading startups to the “resistance and chaos”
space. If the amount of previously accumulated technical debt is significant, the
foreign element (E6 in the early-stage lifecycle model, Figure 7.1) creates a critical
mass of discomfort: the organization enters a state where expectations are not
fulfilled, and the system becomes disarranged and out-of-control.

The reaction to the generated chaos is an attempt to control it with a gradual
integration of high-level guidelines of workflows and processes. Starting by engag-



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 151

ing rapidly changing solutions, control and structures of patterns start to emerge,
entering into the integration and practice stage (at this stage performance start
to increase as shown by Figure 7.5). At the same time, systems entering in this
stage, are not yet mature to be stable enough and need time to learn and grow
into the new state. This time-window is called the “integration and practice”
stage since it represents the time the team-members are gradually integrating the
use of new processes and tools within a new structure of working.

On the other hand, as described in [184], there might also be a rejection to
change and return to chaos. This might be caused by the negative reactions of
managers who expect to see immediate results, or by time and schedule pressure,
which might inhibit the learning process. However, if the integration phase is
properly managed, the benefits of new methods become evident and might be
experienced as useful, gradually forming a new status quo, where initial perfor-
mance is not only restored, but even improved over time. From here on, the
performance growth rate decreases in view of marginal improvements. In fact,
focusing on lightweight and agile methodologies, startups might obtain additional
achievements within the project development and management, as discussed in
[2, 88, 89]11.

This model has correspondence also with the lifecycle model described by
Crowne in [10], who synthesized the startup lifecycle in four stages: startup,
stabilization, growth and maturity. Starting from the startup stage, it represents
the phase in which startups create and refine the initial idea, up to the first
release. This time frame is characterized most from the need to assemble a
small executive team with the necessary skills to start to build the product.
The stabilization phase begins after the first release and it lasts until the product
is stable enough for accepting a new customer without causing any overhead on
the product development (i.e. being able to treat maintenance and scalability
in such a way that the development team maintains the same performance).
The growth phase begins with a stable product development process and lasts
until when the market size, share and growth rate have been established: all the
business processes necessary to support product development and sales. Finally,
the startup evolves to a mature organization, where the product development
becomes robust and predictable with proven processes for new product inventions.
Only then, incremental process improvements can be further adopted. The reader
is referred to Appendix A.2.6 for a review of existing startups-related lifecycles.

As described, the lifecycle of Crowne corresponds with the Satir change model,
only with di↵erent names of stages. Indeed, starting from the left side, we can
assume that the startup phase in [10] represents the initial status quo of the
Satir model, where performance is stable enough to have refinement of the initial

11Note that those marginal improvements are reported by the referenced studies. We didn’t
conduct any evaluation in this concern since out of the scope of our research focus and context
area, as discussed in Subsection 7.5.4.



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 152

idea up to the first release. From the first release, the foreign element triggers
scalability and maintainability issues, which causes the drop-down performance
that is in correspondence of the stabilization phase (named Resistence and Chaos
in the first model). Finally the integration and practice allows startups to grow,
up to the new status quo that represents the maturity phase in the second model.

The Satir change model has also been described in [185] (renamed “stabiliza-
tion curve”) to define the start-up process of a new part of an organization from
the perspective of people, process and technology development. Although it rep-
resents a di↵erent context, we found similar objectives and thus adapted their ex-
periences within our study. The stabilization process, described in [185], presents
many similarities with the evolution in which the software startups evolve. Both
are focused on addressing stabilization challenges as quickly and e↵ectively as
possible, minimizing interruption of day-to-day activities. Therefore, we tried
to adapt the stabilization objectives in face of our theoretical framework, and
identified patterns. The stabilization curve is presented in Figure 7.6.

Figure 7.6: Satir model measures

The main scope of the curve, beside contributing to answer to RQ-3.2 and
RQ-3.3, is trying to explain how to maximize the overall performance evolution
by leveraging the flexibility of methods a↵ecting four measures:

• Minimizing the length of time required to integrate long-term scalable so-
lutions (time-span represented by A).

• Minimizing the depth of performance drop-o↵ during the resistance and
chaos period (measure represented by B).



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 153

• Maximizing the performance level after the initial chaos has been overcome
(measure represented by C ).

• Maximizing long-term performance and continuous improvement after reached
a stage of stabilized processes (measure represented by D). This objective
resulted out of the scope of our research since it was retrieved only in studies
of more mature startups and not in the early-stage period.

In the following part we explain each of the defined measures in Figure 7.6 to
understand their importance in startup companies.

7.5.1 Integrating scalable solutions

As described in the theoretical model (see Chapter 6), the use of an evolutionary
development approach with fast iterations and minimal set of functionalities lead
startups to maintain e↵ective planning and realistic expectations. Analysis of GT
case study (see Subsection 6.3.6) suggests to decrease the time needed to integrate
scalable solutions and maintain the long-term balance between technical debt and
development speed.

Main contributions within the model describe the advantage of using stan-
dard/known technologies aided by: past experience in the domain, support of
community and availability of documentation (see Subsection 6.3.5). Addition-
ally, the externalization of complexity to third party solutions has been reported
to provide high advantages on maintaining simple workflows, easy to integrate
within the existing development environment. Especially the use of standard code
guidelines as well as known development frameworks let startups minimize the
time to re-engineer the product and obtain higher scalability.

Moreover, practitioners confirmed that entering early in the market and adapt-
ing quickly to customers’ needs increased chances of stabilization processes and
smoothly crossing-over the performance drop-down chasm. In fact, startups pre-
ferred building a functioning prototyping with minimal set of functionalities and
iterate on it within a fast evolutionary approach, avoiding feasibility study and
formal architectural design. Indeed, keeping only the product with minimal func-
tionalities has led startups to integrate engineering activities faster and start mov-
ing from a “product-oriented” development focus to integrated “process-oriented”
approach, when it has been necessary (see Subsection 6.3.7).

7.5.2 Performance drop-down

In order to minimize the performance drop-down, startups focused on workflows
with characteristics of high flexibility and partiality (see Section 7.2), giving to the
development team higher freedom and responsibility concerns. In fact all prac-
titioners were responsible of the overall engineering and management activities
(see Subsection 6.3.2).



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 154

Empowering team-members with self-organized and full-stack capabilities is
vital for a software startup. In fact, the most e↵ective management approach,
which startups adopt, is the “embrace and empower” style (see Section 6.2) (also
highlighted by Coleman in [27]). In contrast with the “command and control”,
“embrace and empower” style enhances trust into the development team and
carries out tasks with less direct supervision, greater delegation of responsibilities,
and a more consensual environment.

Going back to the Cynefin framework (see Section 7.3), Snowden also intro-
duced the best configuration of team management approaches within di↵erent
domains. Figure 7.6 represents the configuration of teams with symbols of dots
and connective lines. Full dots and empty dots respectively represent the role
of supervision and normal executive team-member. Straight and dashed lines
respectively represent strong and weak supervision, coordination and control be-
tween defined roles.

Figure 7.7: Cynefin team management [6]

By mapping startups in the unordered domain, we can observe how the defined
team management configuration anticipates weak central rules of supervision,
control and coordination. As discussed in the previous subsection, structures that
attempt to restrict behaviors in the complex and chaotic space are harmful for
the overall performance because of the lack of visibility and feasibility analysis.
Indeed, giving power to the team in the complex space and acting quickly to
understand emerging patterns in the chaotic space are the most suitable strategies
for software startups.

Yet, the more researchers know which space organizations belong to, the better
companies can choose a reasonable strategy to capitalize on the obtained stabil-
ity. Within the order domain, where solutions are well-known or prescriptively



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 155

analyzable, strong connection exists with supervising activities in such a way
that processes are defined and controlled. On the other hand, in an unordered
domain, where taking actions and learning process are the activities to generate
solutions, only the freedom and renewal a↵orded by weak connections can foster
performance.

Hence, development teams that present full-stack and self-organizing settings,
can handle the fast changing development activities and unexpected wide range of
problems that might arise better than conducting a direct supervision with a soft-
ware development manager. Independent developers with cross-domain knowl-
edge can minimize the performance dropdown in the execution of daily tasks. By
contrast a direct supervision would severely hinder the flexibility of the process,
as seen in the Cynefin framework.

7.5.3 Improve desirable workflow patterns

Moving ahead into a more mature stage of a startup lifecycle, development starts
to be less chaotic and controlled by gradually integrating practices and workflows.
In fact, moving from the chaotic towards the complex area, the importance of hav-
ing knowledge of the process has the main objective of observing which practices
were useful during the first release. In this new phase, considering benefits of
desirable practices, collecting metrics of project progress and team management
can aid organizations to take advantages of emergent patterns , and sustain con-
tinuous improvements (see Subsection 6.3.6).

In fact, an interviewee claimed: “To mitigate this (lack of frameworks) I had
to make a schema for other developers when we hired them. We had to do a big
refactoring of the codebase, moving it from custom php to Django, normalizing
the model and making it stick with the business strategy, and not the other way
around. I had the code in di↵erent php server communicating via JSON, some
engineering horror. Now that we are fixing it, it’s really painful. We had to trash
some code. However I don’t regret that I didn’t make this choice sooner, it was
the only way.”

Control over the engineering activities and elements that are identified as bot-
tlenecks can sustain the development speed in the long-run. Basic measurements
facilitate rational decision-making such as revealing when and if additional devel-
opers are needed, or certain activities need to be organized more e↵ectively, or
when gaps exist in either a process or tool12.

Keeping simple and informal workflows in the previous stage helped startups
to let useful development strategies emerge naturally. In fact, initiating a mini-
mal project management with informal schedules, naive metrics to trace project
progress and task assignment mechanisms helped a gradually integration of prac-
tices to control the chaos and the structure of the workflow.

12Gaps might be related to: missing functionalities; lack of customizable solutions, . . .



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 156

In this regard, startups facing with growing number of users and team-members
started to replace informal communication with traceable systems and to intro-
duce basic metrics for measuring project and team progress (e.g. Kanban wall,
issue tracking systems, automatic testing, . . . ).

7.5.4 Long-term performance

Maximize long-term performance and continuous improvement after reached a
stage of stabilized processes represents the last objective. Briefly, evidences in re-
trieved studies report that, when startups mature, adopting lightweight method-
ologies might provide additional benefits. Natural trends seem to tend towards
Agile and Lean methodologies to accommodate fast changing environments as
discussed in Section 7.2, giving them a flexible starting point to establish repeat-
able processes. As previously mentioned, this part of startups’ evolution is out of
the scope of our research. For more details the reader is referred to other studies
which consider more mature startups [13, 2, 88, 89, 90].

7.6 Dynamics and evolution summary (RQ-3)

In this subsection we summarize the most important implications discussed in
this chapter:

• The development strategy in early-stage startups presents characteristics
which are di↵erent from existing methodologies (see Section 7.2). The ori-
entation towards reactiveness and flexibility are dictated by uncertain con-
ditions and time-to-market necessities. Nevertheless, the minimal project
management activities seem to approach towards the Lean Startups method-
ology, which present several commonalities with the early approach: espe-
cially the evolutionary prototyping adjusted according to user feedbacks can
be mapped to the MVP.

• Answering RQ-3.1, the nature of such reactiveness and flexibility is grounded
in the essence of complex systems, here introduced with the Cynefin frame-
work (see Section 7.3). We observed how startups operate across the border
of the complex and chaotic regions, which foster innovation and creativity
but at the same time make the imposition of prescriptive and rigid struc-
tures ine↵ective on software development (see Subsection 7.3.1).

• By analysing the empirical data obtained with the case study we proposed
an early-stage life cycle model, identifying the main steps involved in the
development of the first product. We mapped the 13 companies to the
di↵erent phases, obtaining an overview of the distribution of sample and
internally validating the model (see Section 7.4).

• Answering RQ-3.2, we elaborated a more sophisticated evolutionary curve



www.manaraa.com

Chapter 7. Dynamics and evolution of startups 157

based on the Satir change model. We characterized the performance drop-
down caused by the necessity of returning the accumulated technical debt
while expanding the company’s operation and structuring mitigation strate-
gies with four software development objectives: minimizing the time re-
quired to integrate scalable solutions; minimizing the depth of performance
drop-o↵; maximizing the performance level after the initial chaos has been
overcome; and maximizing the long-term performance (see Section 7.5).

• Answering RQ-3.3 (see subsections from 7.5.1 to 7.5.4), the extrapolated
development strategies, which helps in reaching long-term objectives, are:
integrating scalable solutions with fast iterations and minimal set of func-
tionalities (this allows startups to maintain e↵ective planning and realistic
expectations); empowering team members enabling them to operate hori-
zontally in all the activities of the development environment simultaneously;
improve desirable workflow patterns through the initiation of a minimal
project management over time, as a natural result of emerging activities of
tracing project progress and task assignment mechanisms; and finally, only
when the chaos has been initially managed, long-term performance can be
achieved implementing Agile and Lean practices.



www.manaraa.com

Chapter 8

Summary

In this section we summarize our findings by: addressing the research questions
(RQs) and some lessons learned (Section 8.4); discussing the validity of results
(Section 8.5); and finally suggesting possible directions for future studies (Section
8.6). The first part of this chapter is structured according to the three RQs
initially defined in Subsection 4.1.2:

• RQ-1: What is the state-of-the-art in the SE literature pertaining to engi-
neering activities in startups?

• RQ-2: What is the current state-of-practice related to software development
strategies in early-stage startups?

• RQ-3: What development strategies can be adopted by startups with the
aim of facilitating future growth?

8.1 RQ 1 - State of the art

To understand the current state-of-the-art pertaining to engineering activities in
startups we executed a systematic mapping study and evaluated the rigor and
relevance of the retrieved studies (see Section 4.2). This approach allowed us to
quickly obtain an overview of the research field, identifying prominent contribu-
tions and evaluate the quality of the studies. The results of this process, which
are discussed in Section 5.1, led to the selection of 37 studies from an initial sam-
ple of 943 items. The content of the articles has been discussed in Related Work
(Chapter 3). The analysis performed on the configuration and the quality of the
selected studies, provided evidence that the existing literature is inadequate to
understand the underlying phenomenon of software development in startups:

• Only 13 studies are entirely dedicated to the research area of software de-
velopment in startups while the remaining articles are only partially or
marginally mentioning contributions relevant to the field.

• The studies are poorly interrelated by mutual citations and hardly consti-
tute a consistent body of knowledge.

158



www.manaraa.com

Chapter 8. Summary 159

• By visualizing the distribution of articles in the four dimensions of the
systematic map we were able to provide detailed insights and simultaneously
analyze multiple facets (see Subsection 5.1.1).

• Considering that the conducted studies are generally non-rigorous and mediocrely
relevant for the industry (see Subsection 5.1.2), it is very unlikely that the
findings can have a real impact in real settings.

• We identified only four publications bringing prominent contributions to
the field (three of which refer to the same data set), according to a rank-
ing functions based on di↵erent features (publication year, venue, research
type, contribution type, focus, pertinence, rigor and relevance as detailed
in Subsection 5.1.4).

• Although software startups have some common characteristics with other
types of companies, from an engineering perspective the combination of
di↵erent elements poses a set of new challenges for SE, as confirmed by
di↵erent authors.

• The creation of a coherent body of knowledge about software startups,
is restrained by the fact that di↵erent authors use the word ’startup’ in
di↵erent contexts (see discussion in Subsection 5.1.3). Given the ambiguities
in the use of the word startup, it should be responsibility of the researcher
to mention explicitly the particular context a↵ected by the study (mention
which has been neglected in most of selected studies).

• Since most of the retrieved studies focus on mature startups, we couldn’t
identify any relevant empirical evidences discussing engineering activities in
the very early-stage of the startup creation.

The importance of development challenges is further attested by the prolifer-
ation of non-peer reviewed books dedicated to startups, reviewed and discussed
in Appendix A.2.5. The literature gap represents a clear signal which empowered
our motivation in pursuing scientific research in this field.

8.2 RQ 2 - State of practice

The case study has been conducted in the field by combining di↵erent research
methodologies (see Section 4.3). It provided a wide set of evidences fostering the
understanding of the underlying phenomenon of software development from idea
conception to the first open beta release in startups. Thanks to a systematic
procedure, the low-level concepts extracted from interviews’ transcripts (630 GT
codes) contributed to the formation of a theoretical model presented and validated
in Chapter 6.

The GT process has led to the creation of a formal theory, grounded in the
data, describing software development in early-stage startups: focusing on limited
number of suitable functionalities, and adopting partial and rapid evolutionary de-



www.manaraa.com

Chapter 8. Summary 160

velopment approaches, early-stage software startups operate at high development
speed, aided by skilled and highly co-located developers. Through these develop-
ment strategies, early-stage software startups aim to find early a product/market
fit within extremely uncertain conditions and severe lack of resources. Never-
theless, by speeding-up the development process, they accumulate technical debt,
causing an initial and temporary drop-down in performance before setting o↵ for
further growth.

The implications derived from the extensive model created using practitioners’
perception are discussed in Section 6.5 and can be summarized as following:

• The most urgent priority of software development is to shorten time-to-
market.

• Startups do not apply any standard development methodology: the closest
development approach undertaken by early-stage startups tends towards
the Lean startup methodology.

• The greater part of engineering activities of startups are focused on the
implementation while only little attention is given to more conventional
activities (project management, requirement specifications, analysis, archi-
tecture design, automatic testing, . . . ).

• The first release of the product includes only a limited set of well suitable
functionalities focused on user experience.

• Engineering activities are supported by low-precision artifacts and collabo-
rative tools integrated with the development environment.

• Characteristics of the founding team are the most important determinants
of speed.

• The initial lack of structures and processes negatively a↵ect the perfor-
mances when the company starts growing.

• Startups bring the first product to market in a very short-time and practi-
tioners are satisfied with the adopted software development strategies.

By speeding-up the development process, startups accumulate technical debt,
ignoring processes, relying on informal communication and replacing documen-
tation with low-precision artifacts (see Section 6.3). As discussed in Chapter 7,
it takes more than just implementing features to run a sustainable project1. For
startups it is essential to look ahead within short-term deadlines and determine
the right product/market fit driven by user feedbacks, using flexible and reactive
development approaches and adopting mitigation strategies (see Chapter 6) to
contain the severity of accumulated technical debt.

1It refers to those development strategies that don’t cause a critical accumulation of technical
debt.



www.manaraa.com

Chapter 8. Summary 161

8.3 RQ 3 - Dynamics and evolution in startups

In Chapter 7 we discussed the operational dynamics of startups analyzing the
components of the context and identifying elements which characterize the evo-
lution of software development after the first release. The most relevant findings
and contributions are summarized as follows:

• The product-centric structure and modus operandi of early-stage startups
require the introduction of minimal structures and control when the com-
pany starts to grow. By making a comparison with the flexibility and par-
tiality of other methodologies (see Section 7.2), and analyzing the empirical
data, we found that after the first chaotic stages startups are likely to adopt
some form of Agile/Lean development methodologies to structure and con-
trol the development.

• By using the Cynefin framework to understand complexity of interactions,
we have found that startups live and operate in the borderline between the
chaotic domain and the complex domain, crossing the border several times.
This temporary condition provide benefit for creativity and disruption, and
at the same time makes ine↵ective the attempt to impose any prescriptive
and rigid structure over the development activities (see Section 7.3).

• We presented a lifecycle model of early-stage startups which, from a software
development point of view, contributes to build a common vocabulary for
researchers and provide a framework for grounding the findings (see Section
7.4).

• By looking at the trend of performances after product release, we character-
ized the performance dropdown provoked by the necessity of returning the
accumulated technical debt and simultaneously by expanding the company’s
size and number of users (see Section 7.5). We elaborated a structured mit-
igation solution based on the satir change model with four objectives for
software development (minimizing the time required to integrate scalable
solutions; minimizing the depth of performance drop-o↵; maximizing the
performance level after the initial chaos has been overcome; and maximiz-
ing the long-term performance).

8.4 Lessons learned

During the intense period of research work we learned several other lessons which
do not address any particular research question, but are worth mentioning:

• Online surveys are delicate instruments that must be used with additional
care when involving busy practitioners, especially in startups (see discussion
in Subsection 5.2.4).



www.manaraa.com

Chapter 8. Summary 162

• Semi-structured interviews need to be quickly adjusted to each interview
context, adapting the flow to the gathered answers: original questions must
serve as a guideline. We observed that, when investigating engineering
activities, the most interesting concepts emerged after the researchers delved
into each answers by replying with a why? to the interviewee’s statements.

• The di↵erent activities involved in the validation of the theory (see Section
6.6) allowed us to iteratively enhance the quality of the model through
a continuous comparison with both the empirical data and the existing
literature.

• Scheduling an interview with practitioners of startups, especially in the
early stage of product creation, is challenging. The hype, which surrounds
successful startups, makes their CEOs and CTOs likely to receive many
marketing research surveys and request for interviews which they rarely fill
out. Moreover due the high-pressure for releasing the product, they usually
work overtime to meet deadlines. However we have found that the best
approach to get an interview is by attracting technical people and engage
them in informal discussions prior to the formal interview.

• Software development is a complex phenomenon and to be fully understood
requires the researchers to take into account the complex dynamics with
several non-linear elements playing a first-order role. Tailoring an adequate
research methodology to a specific complex research problem represents a
challenge which shouldn’t be underestimated. However, especially in this
field, the research skills alone are not enough to perform an e↵ective research
if not balanced with field expertise.

• Probably due to space restrictions in journal publications, it’s very di�cult
to find complete examples of grounded theory studies which show details be-
hind the coding process. If not fully documented, the explanatory power of
grounded theory faces the risk of being considered not transparent and thus
unreliable. To foster the use of grounded theory in SE, researches should use
modern tools for knowledge management and make their databases avail-
able for an external reviewer to verify that the coding process followed the
procedure specified by the research methodology.

Summarizing the findings, we recall the research goal that we defined in Sub-
section 4.1.1, i.e. to understand how software development strategies are en-
gineered by practitioners in startup companies in terms of level of: structure,
planning and control of software projects, in the period of time that goes from
idea conception to the first open beta release of the software product.

Throughout the execution of the research we inquired practitioners exploring
their perception of a perfect hindsight early-stage development strategy. We have
found that the key elements that characterize the development strategies are:

• Flexible structures of activities, tools and artifacts, which cannot be pre-



www.manaraa.com

Chapter 8. Summary 163

scriptively defined. Rather, an evolutionary approach (with a minimal set
of suitable functionalities) is the only methodology which allows startups to
find early the right product/market fit. Moreover, the partial integration of
long-term scalable solutions, as described in Subsection 7.5.1, allows star-
tups to accommodate the fast changing environment and business growth.

• Just-in-time planning perspective, keeping simple and minimal project man-
agement to improve desirable workflow patterns which occur in the short-
term. Infact, only by acting quickly and looking back to results obtained
from the market, startups can learn from their mistakes and plan for improv-
ing those activities that had positive achievements (see Subsection 7.5.3).

• Distributed control settings, empowering team-members with self-organized
and full-stack capabilities to enhance greater delegation of responsibilities
and more consensual environment, as discussed in Subsection 7.5.2.

In this study we provided a theoretical baseline for other researchers to tackle
challenging issues, which characterize this research domain. The next two sections
will discuss respectively the generalizability of results and possible future works.

8.5 Validity threats

In this section we discuss the validity of the overall results. Methodology-related
threats to validity, i.e. systematic mapping study and grounded theory case study,
were previously discussed respectively in subsections 4.2.8 and 4.3.8.

In the remaining part of this section we structure the validity in four parts,
accordingly with Wholin taxonomy [129]:

• External validity - which requires establishing the domain to which the
study’s findings can be generalized (partially discussed above).

• Internal validity - which is enhanced by establishing causal relationships
whereby we attest that certain conditions lead to other conditions, as dis-
tinguished from spurious relationships2.

• Construct validity - which is enforced by clearly specifing operational pro-
cedures, and providing an adequate description of constructs3 that are used
to generate the theory.

• Conclusion validity - which represent the degree to which conclusions are
reasonable, according to the defined relationships in the data. It involves en-
suring adequate sampling procedures, appropriate analytical methods and
reliable measurement procedures. Reliability requires to demonstrate that

2A spurious relationship is a relationship in which two events have no direct causal connec-
tion, but rather due to either a coincidence or the presence of confounding factors.

3Constructs are complex ideas that we as humans form in order to summarize observations
about things that we cannot see directly. For example a construct is “job satisfaction”, which
to be defined, requires a higher level of abstraction than a concrete object(e.g. a book).



www.manaraa.com

Chapter 8. Summary 164

the operations of a study - such as data collection procedures - can be
repeated by other researchers, obtaining the same results.

The prominent contribution of this research has been obtained by means of
a systematic mapping study, on-line questionnaires and grounded theory study.
As suggested by [125], we did our best to maximize internal validity, external
validity and ease of replication by integrating complementary empirical research
methods. In fact, Dickson claims: “One experimental study on a topic, no matter
how good, cannot, in isolation, demonstrate much of anything conclusively” [186];

Despite the validity and reliability advantages which derive from the triangu-
lation of the three methodologies [149], we had to consider many validity threats
during their design and analysis.

8.5.1 External validity

In this subsection we provide further explanation about the generalizability of
results, previously discussed in Section 6.7.

The systematic mapping study helped us to sharpen and delimitate the bound-
aries of our research area by defining the initial research questions, eliminating
irrelevant variations of the context and narrowing the research focus. The flexible
design, provided by the GT approach, allowed us to further iterate and adjust
the context of the study during its execution.

The first threat related to external validity might be caused by a possible
wrong selection of subjects interviewed for the study. This threat profoundly
a↵ects GT, since it is a qualitative research method, which makes the use of
semi-structured interviews, in fact, centres the research on respondent’s opinions.
In order to mitigate this threat we selected interviewees which covered positions
of CTOs’ and CEOs’. Their perspectives on what it is taking place within the
organization, were the only meaningful data taken in consideration in the study.
In many cases there was no supporting evidence to verify the opinion expressed.
As reported in Subsection 5.2.4 questionnaire dedicated to “data triangulation”
was not of primary support because of the little time practitioners were able to
grant to it. However, researchers have to accept the veracity of what respondents
reported during the interviews [29]. Notwithstanding the issues surrounding semi-
structured interviews are vital. Within our study, although the reality might be
di↵erent from what has been described, the reported data are CTOs’ and CEOs’
perception, which is used to base their decisions.

Finally the comparison with similar frameworks also helped in establishing
the domain to which the study’s findings can be generalized. In particular the
previous framework developed by Coleman in [27] has allowed researchers to find
similarities, di↵erences and broader reasoning related to factors that hinder ma-
ture processes to be established in startups. Moreover a comparison has been
conducted also with the notorious Brook’s framework describing the basic at-



www.manaraa.com

Chapter 8. Summary 165

tacks to the challenges of developing software systems (see Subsection 6.6.1) and
other extant literature retrieved during the conduction of SMS4 (see Subsection
6.6.2). In conclusion, regarding the validation of the subcategories, a continu-
ous re-evaluation of the interview transcripts has been performed (see Subsection
4.3.5). Additional validation instruments have been focused on testing the con-
ditions which define the core category and its characteristics, presented in the
high-level framework description (see Subsection 4.3.5 and Section 6.4).

8.5.2 Internal validity

To enhance the internal validity, we created a three-dimensional research frame-
work to perform a triangulation validity procedure. By means of grounded theory
approach formed by a systematic mapping study, interviews and follow-up ques-
tionnaires we searched for convergence among di↵erent sources of information to
confirm our theories.

During data collection we strengthen the grounding process of the theory
by triangulating qualitative with quantitative collection methods (see Subsection
4.3.3). However, in view of the poor reliability of the questionnaire results, we
used only partial integration of quantitative data that were confirmed during the
interview process (for detailed explanation refer to Section 5.2) in support of the
framework validation. Then, questionnaires constituted only a side-element of
this research and their results have never been used alone to draw conclusions,
which are instead based on systematic processes of literature review and interview
analysis.

By improving and validating the theory definition, we conducted a final com-
parison of the emergent theory with: extant literature, previously developed
models and evaluation of empirical data (see subsections 6.6.1, 6.6.2 and 6.6.4
respectively). With the final model validation we highlighted and examined simi-
larities, contrasts and explanations as discussed in [187]. In this regard Eisenhardt
stated: “Tying the emergent theory to existing literature enhances the internal
validity, generalizability, and theoretical level of the theory building from case
study research [. . . ] because the findings often rest on a very limited number of
cases”.

Little ambiguities about direction of causal influences have been reduced by
introducing arrows to indicate the direction of the causal relation in the theoretical
model, both in the high level and low level frameworks. Furthermore, by means of
comparison between our theoretical model and extant studies in the broader fields,
we revealed that the theory resembles in wider startup development context,
as discussed in Section 6.4. Nevertheless, we discovered important confounding
factors which might mine the conclusion and generalizability of the study related

4Note that the generalizability of results is applied only to those startups that operate in
software-intensive activities as described by the theory generation in Subsection 6.4.



www.manaraa.com

Chapter 8. Summary 166

to innovation, creativity and market requirements, as discussed in Subsection
6.6.3.

8.5.3 Construct validity

The first important threat to the construct validity of the study is a possible in-
adequate description of constructs. In order to dismiss this risk, the entire study
constructs have been adapted to the terminologies utilized by practitioners and
defined at an adequate level for each theoretical conceptualization5. Moreover,
as described in Subsection 4.3.4, during the coding of interview transcripts the
researchers adopted wide and explanatory descriptive labels for theoretical cate-
gories, to capture the underlying phenomenon without losing relevant details.

The second important threat is caused by the fact that interviewees might
already be aware of the possible emergent theories analyzed by researchers. To
reduce the risk that some hypothesis could have been involved in the design of
the research, we let mainly participants drive the direction of the case study, as
discussed in Section 4.3.

Another threat associated with the construct validity is the evaluation appre-
hension, which deals with people’s rejection attitude towards the assessment of
their behaviour. To overcome this risk we didn’t attained to first answers from
practitioners, but rather went towards details of engineering elements and activ-
ities (see Subsection 4.3.2). Moreover, we developed a rigorous data collection
protocol to create case study databases and employ integration of multiple data
collection methods. Reporting bias was mitigated by packaging all the needed
material for conducting new researches in other contexts in order to criticize our
findings (interview package with instructions has been made available online6.
Moreover, two academic supervisors with expertise in the area have conducted a
peer-review analysis of framework’s constructs.

To control distortion during analysis we made extensive use of memos. To
demonstrate that we were aware of personal biases, memos provided us another
important function in controlling the quality of data analysis (see Subsection
4.3.4). Through the use of memos and comparative analysis we were able to
check if data fitted into the emerging theory and also countering subjectivity
that ultimately enhanced the likelihood of producing accurate research findings.

Moreover, the GT categories of the theoretical model are based on the results
of interviews which have been conducted by asking a number of questions de-
fined in the interview package and adapted to the context. Given that di↵erent
questions lead to di↵erent answers, the creation of specific categories have been
influenced by the particular choice of questions asked during the interview. To

5For instance defining Time shortage, the researchers explained it in terms of Investor pres-
sure, CEO/business pressure, Demo presentations at events and internal final deadline used by
most of the interviewees during the study.

6Available at https://github.com/adv0r/BTH-Interview-Package .

https://github.com/adv0r/BTH-Interview-Package


www.manaraa.com

Chapter 8. Summary 167

reduce the bias introduced on the final model by choosing certain questions, we:
made use of open broad questions, which give to the respondents enough freedom
to move across di↵erent concepts; used the script only as a high-level guideline
to conduct the interview, letting the respondent drive the direction of next ques-
tions; iteratively adapted the interview package at each new interview, according
to the partial results we were obtaining from the emerging theory.

Finally, throughout the all thesis document we provided the detailed pro-
cedures that have been followed in executing the study, to reduce the risk of
introducing personal biases. The same approach has been followed when con-
structing the model, by showing the complete list of raw codes, involved in the
generation of categories (see Appendix A.4.3).

8.5.4 Conclusion validity

Grounded theory has been already applied by other researches in similar contexts
to attest relationships among conceptualizations of an examined phenomenon
(see [2, 188, 29]). Those relationships between sampling and analysis should be
verified in such a way that emerging findings remain consistent as further data
are collected. To attest this, we explored and tested:

• Each category and the strength of relations between them.
• Hypotheses, derived from and related to the emergent theory.
• Deviant cases to ensure robustness and general applicability.

In particular we were prepared to modify generated categories so that the
new data could be adapted into the emerging theory according to the concepts
of: theoretical sampling and theoretical saturation (see Subsection 4.3.4).

According to the theoretical sampling concept, we adjusted our research design
and the emergent theory until only marginal results were generated (see Subsec-
tion 4.3.5). Moreover to enhance reliability of the outcome conceptualizations
and relations, the process of coding interviews has been systematically conducted
following a detailed process. Then, we asked to other practitioners a confirma-
tion to further validate the generated framework and enhance the reliability of
the relations among the identified categories (see ection 4.3.2).

An important issue is related to the fact that the limited number of interviews
might not represent the complete scenarios in our context of study. Nevertheless,
this issue has been partially mitigated as result of the theoretical saturation con-
cept (see Subsection 4.3.8). This experience is attested by Martin’s statement:
“By the time three or four sets of data have been analysed, the majority of use-
ful concepts will have been discovered” [189]. To obtain major certainty of the
obtained results, what we applied was the final validation, discussed in Section
6.6.



www.manaraa.com

Chapter 8. Summary 168

Despite we couldn’t apply any power analysis procedures7, in grounded theory
the sample size depended on when data saturation occurs. Ramer in [190], com-
paring quantitative to qualitative researches, states: “reaching data saturation,
which involves obtaining data until no new information emerges, is critical for ob-
taining applicability in qualitative research”. To avoid interrupting the research
prematurely, after attesting that no more relevant information could be gathered
from executing additional interviews, we iterated grounded theory study one more
time, verifying that the explanatory power of the core category was fulfilled (see
Subsection 4.3.5).

The approach of generating theory allowed us to check emerging categories
and their properties by gathering new evidence within an iterative and evolution-
ary approach, in view of the wide context of the research area that was under
investigation.

8.6 Future work

We believe that one of the most urgent priority to start fulfilling the gap in this
field is the creation of a common vocabulary to base future researches. In fact,
without a consistent body of knowledge, it is di�cult to have a strong consensus
on the terminology (beginning with the term startup itself).

Furthermore, the behavioral model presented in this thesis can be used as
a starting point for further studies, where additional researchers can focus on
specific issues which appear in the model (low-precision artifacts, integrated on-
line collaborative tools, minimal workflows and informal testing and other issues
discussed in Chapter 6) and their impact on the development process.

Other researchers can use the material presented throughout the thesis to
reproduce the study with other software startups, adjusting the model presented
in this thesis or creating a di↵erent one. The interview package8, presented in
Section 4.3.2, can be used for conducting the semi-structured interviews and
improved during the execution.

Moreover, with the use of rubrics and theoretical framework (see Section A.5),
researchers and practitioners can evaluate the measures of potential capacity, ex-
ecution speed and technical debt in new studies.

Furthermore the early-stage life cycle model we provided (see Section 7.4) can
be further extended and adapted. Additionally, researchers can use the system-
atic map of existing studies to spot weak areas and topics to tackle. We identified
several commonalities between the issues related to software development in star-
tups and the thematic faced by the emerging research area dedicated to technical

7Procedures used prior to the study to determine how large the sample size is required to
be in order to achieve statistical significance.

8The interview package can be found online at https://github.com/adv0r/BTH-

Interview-Package .

https://github.com/adv0r/BTH-Interview-Package
https://github.com/adv0r/BTH-Interview-Package


www.manaraa.com

Chapter 8. Summary 169

debt (a recent article depicts the scenario of research on technical debt [46]). We
strongly believe that both emerging disciplines can benefit by a mutual collabo-
rative dialog, especially in understanding how the technical debt influences the
growth of the company. In particular, researchers can focus on mitigation strate-
gies that can be adopted in the early-stage to limit the technical debt, with the
least possible impact on the time-to-market.



www.manaraa.com

Chapter 9

Conclusions

Startups are able to produce cutting-edge software products with a wide impact
on the market, significantly contributing to the global economy. Software de-
velopment, especially in the early-stage, is at the core of the company’s daily
activities. Despite their severely high failure-rate, we have found that the quick
proliferation of startups is not supported by an adequate and scientific body of
knowledge. To be able to intervene on the software development strategy with
scientific and engineering approaches, the first step is to understand startups’
behavior. Hence, in this research work, we attempted to provide an initial ex-
planation of the underlying phenomenon by means of a systematic mapping of
the literature combined with a grounded theory case study, focusing on the early
engineering activities from the idea conception to the first open beta release of
the product.

Through an intense exploratory research conducted with a systematic ap-
proach, we produced a theoretical model grounded into the hindsight knowledge
collected among startup practitioners (see Chapter 6) with the aim of explain-
ing how development strategies are engineered by practitioners. The explanatory
capability and correctness of the model have been validated by means of system-
atic comparisons with the state-of-the-art results and empirical data (see Section
6.6). The systematic mapping of the literature, with 37 studies extracted from an
initial sample of 943 items, revealed a multi-faceted state-of-the-art inadequate
to support software development activities in startup companies (see Subsection
5.1.4). On the other hand, the case study conducted in 13 early-stage startups,
provided a broad set of empirical evidences obtained by combining di↵erent re-
search methodologies in a grounded theory approach (see Section 4.3).

The overall results of our research confirm that startups possess unique char-
acteristics of uncertainty, lack of resources and time-pressure. These factors in-
fluence the software development to an extent that transforms every decision
related to its strategies into a di�cult trade-o↵ for the company. Moreover, al-
though startups share di↵erent characteristics with other similar SE domains (e.g.
market-driven development, small companies and web engineering), the unique
combination of coexisting factors poses a whole new set of challenges which need
to be addressed by primary studies. Especially when bringing the first product

170



www.manaraa.com

Chapter 9. Conclusions 171

to market, startups’ most urgent priority is releasing the product as quickly as
possible to verify the product/market fit and to adjust the business and prod-
uct trajectory according to early feedback and collected metrics. In this stage
startups often discard any formal project management, documentation, analysis,
planning, testing and other traditional process activities. In fact, practitioners
take advantage of an evolutionary prototyping approach, using well-integrated
tools and externalizing complexity to third party solutions.

However, the initial gain obtained in terms of flexibility and speed is coun-
terbalanced by the need of restructuring the product and control the engineering
activities when the company starts to grow. In fact, if successful, the startup will
face a growth in terms of number of customers, employees and product function-
alities that leads to the necessity to control the initially chaotic software develop-
ment environment. In this context the most significant challenge for early-stage
startups is finding a sweet spot between being fast enough to enter the market
early while controlling the amount of accumulated technical debt. The product-
centric development approach, adopted in the early stage, fosters characteristics
of flexibility and partiality in comparison to other traditional SE methodologies.
In fact, as confirmed by analyzing the Cynefin framework, the use of prescriptive
and rigid structures over the development activities would hinder performance
since startups operate across the border between chaotic and complex domain.
Therefore, from a software development perspective, working with low-precision
engineering activities represents the only viable strategy that startups can follow
in the early stage of their lifecycle.

Nevertheless, looking at the growing phase after the first open beta release,
a performance dropdown is provoked by the necessity of returning the accumu-
lated technical debt under delicate circumstances, where an increased market
demand meets a poorly engineered product and development process. Indeed, to
mitigate the lack of established engineering strategies, startups need to integrate
scalable solutions from the beginning, and to empower the development team -
the primary resource to shorten time-to-market - by an embrace and empower
management style. Notwithstanding, when the initial approach is no longer sus-
tainable to support the increased software development complexity, startups start
adopting workflows that naturally emerged during the first phases. Eventually
they increase long-term performance by gradually moving from a product-centric
approach towards the adoption of self-tailored development practices.

In this thesis we discussed a number of novel challenges for both practitioners
and researchers, while presenting a first set of concepts, terms and activities which
set the software engineering scene for the rapidly increasing startup phenomenon.
By making a comparison with Berry’s definition of SE [191], we would like to see
the rise of a new discipline - startup engineering - which can be defined as the use
of scientific, engineering, managerial and systematic approaches with the aim of
successfully developing software systems in startup companies.



www.manaraa.com

References

[1] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in
Software Engineering,” in 12th International Conference on Evaluation and Assessment
in Software Engineering, vol. 17, no. 1, 2007, pp. 1–10.

[2] G. Coleman and R. O’Connor, “Using grounded theory to understand software process
improvement: A study of Irish software product companies,” Information and Software
Technology, vol. 49, no. 6, pp. 654–667, 2007.

[3] I. Heitlager, R. Helms, and S. Brinkkemper, “A tentative technique for the study and
planning of co-evolution in product,” in Software Evolvability, 2007 Third International
IEEE Workshop on, oct. 2007, pp. 42 –47.

[4] A.M.M. Sharif Ullah and J. Tamaki, “Analysis of kano-model-based customer needs for
product development,” Journal of System Engineering, vol. 14, no. 2, pp. 154–172, Jun.
2011.

[5] Scott W. Ambler. Choose the Right Software Method for the Job. [Online]. Available:
http://www.agiledata.org/essays/di↵erentStrategies.html (Accessed : Aug. 25, 2012).

[6] C.F. Kurtz and D.J. Snowden, “The new dynamics of strategy: Sense-making in a complex
and complicated world,” IBM Systems Journal, vol. 42, no. 3, pp. 462 –483, 2003.

[7] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Business, 2011.

[8] Y. Mashiko and V.R. Basili, “Using the gqm paradigm to investigate influential factors
for software process improvement,” J. Syst. Softw., vol. 36, no. 1, pp. 17–32, Jan. 1997.

[9] D. Smagalla, “The truth about software startups,” MIT Sloan Manage. Rev. (USA),
vol. 45, no. 2, p. 7, Winter 2004.

[10] M. Crowne, “Why software product startups fail and what to do about it,” in Proceedings
of 2002 IEEE International Engineering, 2002, pp. 338–343.

[11] A. Maccormack, “How Internet Companies Build Software,” MIT Sloan Management
Review, pp. 75–84, 2001.

[12] K.M. Eisenhardt and S.L. Brown, “Time pacing: competing in markets that won’t stand
still.” Harvard Business Review, vol. 76, no. 2, pp. 59–69, 1998.

[13] S.M. Sutton, “The role of process in software start-up,” IEEE Software, vol. 17, no. 4,
pp. 33–39, Aug. 2000.

[14] M. Andreessen. Why software is eating the world. [Online]. Available: http://goo.gl/
6CEVN (Accessed : Aug. 25, 2012).

[15] T. Kane, “The Importance of Startups in Job Creation and Job Destruction,” Kau↵man
Foundation, Tech. Rep., July 2010.

172

http://www.agiledata.org/essays/differentStrategies.html
http://goo.gl/6CEVN
http://goo.gl/6CEVN


www.manaraa.com

References 173

[16] G. Coleman, “An empirical study of software process in practice,” in Proceedings of the
38th Annual Hawaii International Conference on System Sciences, vol. 00, 2005, p. 315c.

[17] S. Blank, The four steps to the epiphany. Cafepress. com, 2005.

[18] M. Kajko-Mattsson and N. Nikitina, “From Knowing Nothing to Knowing a Little: Expe-
riences Gained from Process Improvement in a Start-Up Company,” in 2008 International
Conference on Computer Science and Software Engineering. IEEE, 2008, pp. 617–621.

[19] T.W. Archibald, L.C. Thomas, and E. Possani, “Keep or return? Managing ordering and
return policies in start-up companies,” European Journal of Operational Research, vol.
179, no. 1, pp. 97–113, May 2007.

[20] D. Storey, Entrepreneurship and the New Firm. Croom Helm, 1982.

[21] A.B. Perkins and M.C. Perkins, The Internet Bubble: Inside the Overvalued World of
High-Tech Stocks – And What You Need to Know to Avoid the Coming Catastrophe.
HarperInformation, 1999.

[22] M. Marmer, B.L. Herrmann, E. Dogrultan, R. Berman, C. Eesley, and S. Blank, “Startup
Genome Report Extra: Premature Scaling,” Startup Genome, Tech. Rep., 2011.

[23] R. Grimaldi and A. Grandi, “Business incubators and new venture creation: an assess-
ment of incubating models,” Technovation, vol. 25, no. 2, pp. 111–121, Feb. 2005.

[24] C.M. Christensen, The Innovator’s Dilemma. Harvard Business School Press, 1997.

[25] Startup types distribution. [Online]. Available: http://techcrunch.com/2012/02/17/
crunchbase/ (Accessed : Aug. 25, 2012).

[26] P. Allen, M. Ramachandran, and H. Abushama, “PRISMS: an approach to software
process improvement for small to medium enterprises,” in Third International Conference
on Quality Software. IEEE, 2003, pp. 211–214.

[27] G. Coleman and R.V. O’Connor, “An investigation into software development process
formation in software start-ups,” Journal of Enterprise Information Management, vol. 21,
no. 6, pp. 633–648, 2008.

[28] G. Chroust, “What is a software process?” Journal of Systems Architecture, vol. 42, no. 8,
pp. 591–600, Dec. 1996.

[29] G. Coleman and R. Oconnor, “Investigating software process in practice: A grounded
theory perspective,” Journal of Systems and Software, vol. 81, no. 5, pp. 772–784, May
2008.

[30] J. Bach, “Microdynamics of process evolution,” Computer, vol. 31, pp. 111–113, 1998.

[31] K. Martin and B. Ho↵man, “An open source approach to developing software in a small
organization,” Software, IEEE, vol. 24, no. 1, pp. 46 –53, Jan. 2007.

[32] A. Cockburn, Surviving Object-Oriented Projects. Addison-Wesley Professional, 1998.

[33] M. Tanabian, “Building high-performance team through e↵ective job design for an early
stage software start-up,” in Management Conference, 2005, pp. 789–792.

[34] S. Chorev and A.R. Anderson, “Success in Israeli high-tech start-ups; Critical factors and
process,” Technovation, vol. 26, no. 2, pp. 162–174, Feb. 2006.

[35] M. Kakati, “Success criteria in high-tech new ventures,” Technovation, vol. 23, no. 5, pp.
447–457, May 2003.

http://techcrunch.com/2012/02/17/crunchbase/
http://techcrunch.com/2012/02/17/crunchbase/


www.manaraa.com

References 174

[36] M. Marmer, B.L. Herrmann, E. Dogrultan, R. Berman, C. Eesley, and S. Blank, “The
startup ecosystem report 2012,” Startup Genome, Tech. Rep., 2012.

[37] C. Alves, S. Pereira, and J. Castro, “A Study in Market-Driven Requirements Engineer-
ing,” Universidade Federal de Pernambuco, Tech. Rep., 2006.

[38] O.D. Johan Natt, “Elicitation and management of user requirements in market-driven
software development,” Ph.D. dissertation, Department of Communication Systems Lund
Institute of Technology, 2002.

[39] P. Sawyer, I. Sommerville, and G. Kotonya, “Improving market-driven re processes,” in
International Conference on Product-Focused Software Process Improvement (Profes ’99),
1999.

[40] C. Potts, “Invented requirements and imagined customers: requirements engineering for
o↵-the-shelf software,” in Requirements Engineering, 1995., Proceedings of the Second
IEEE International Symposium on, mar 1995, pp. 128 – 130.

[41] L. Karlsson, Å.G. Dahlstedt, J.N.O. Dag, B. Regnell, and A. Persson, “Challenges in
market-driven requirements engineering - an industrial interview study,” in Proceedings
of the Eighth International Workshop on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ’02, 2002.

[42] D. A., “Study of current practices in marketdriven requirements engineering,” in Third
Conference for the Promotion of Research in IT, University Colleges Sweden, 2003.

[43] M. Keil and E. Carmel, “Customer-developer links in software development,” Commun.
ACM, vol. 38, no. 5, pp. 33–44, May 1995.

[44] W. Cunningham. The WyCash Portfolio Management System. [Online]. Available: http:
//c2.com/doc/oopsla92.html (Accessed : Sep. 15, 2012).

[45] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical debt and in-
terest,” in Proceedings of the 2nd Workshop on Managing Technical Debt, ser. MTD ’11.
New York, NY, USA: ACM, 2011, pp. 1–8.

[46] C. Izurieta, A. Vetrò, and N. Zazworka, “Organizing the technical debt landscape,” in
Workshop on Managing Technical Debt (MTD), 2012 Third International, 2012, pp. 23–
26.

[47] Third international workshop on Managing Technical Debt. [Online]. Available: http:
//www.sei.cmu.edu/community/td2012/ (Accessed : Sep. 15, 2012).

[48] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack,
R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N. Zazworka, “Managing
technical debt in software-reliant systems,” in Proceedings of the FSE/SDP workshop on
Future of software engineering research, New York, NY, USA, 2010, pp. 47–52.

[49] I. Richardson and C. Gresse von Wangenheim, “Why Are Small Software Organizations
Di↵erent?” IEEE Software, pp. 18–22, 2007.

[50] A. Valtanen, “Big Improvements with Small Changes : Improving the Processes of a
Small Software Company,” Product-Focused Software Process Improvement, no. 2006,
pp. 258–272, 2008.

[51] F. Mc Ca↵ery, P. Taylor, and G. Coleman, “Adept: a unified assessment method for
small software companies,” Software, IEEE, vol. 24, no. 1, pp. 24–31, 2007.

[52] K. Dangle, P. Larsen, M. Shaw, and M. Zelkowitz, “Software Process Improvement in
Small Organizations: A Case Study,” IEEE Software, vol. 22, no. 6, pp. 68–75, 2005.

http://c2.com/doc/oopsla92.html
http://c2.com/doc/oopsla92.html
http://www.sei.cmu.edu/community/td2012/
http://www.sei.cmu.edu/community/td2012/


www.manaraa.com

References 175

[53] Y. Deshpande and S. Hansen, “Web engineering: creating a discipline among disciplines,”
IEEE Multimedia, vol. 8, no. 2, pp. 82–87, 2001.

[54] E. Mendes and M. Nile, Web Engineering. Springer, Jan. 2005, vol. 4, no. 3.

[55] R. Baskerville, L. Levine, J. Pries-Heje, and S. Slaughter, “How internet software com-
panies negotiate quality,” Computer, vol. 34, no. 5, pp. 51–57, May 2001.

[56] H. Ran, W. Zhuo, and X. Jianfeng, “Web Quality of Agile Web Development,” 2009
IITA International Conference on Services Science, Management and Engineering, pp.
426–429, Jul. 2009.

[57] D. Reifer, “Web Development: Estimating Quick-to-Market Software,” Software, IEEE,
pp. 57–64, 2000.

[58] M. Sulayman, C. Urquhart, E. Mendes, and S. Seidel, “Software process improvement
success factors for small and medium Web companies: A qualitative study,” Information
and Software Technology, vol. 54, no. 5, pp. 479–500, May 2012.

[59] S. Blank and B. Dorf, The Startup Owner’s Manual: The Step-by-Step Guide for Building
a Great Company. K&S Ranch Publishing LLC, 2012.

[60] J. Grudin, “Interactive systems: bridging the gaps between developers and users,” Com-
puter, vol. 24, no. 4, pp. 59 –69, april 1991.

[61] V. Basili and A. Turner, “Iterative Enhancement: A Practical Technique for Software
Development,” IEEE Transactions on Software Engineering, vol. 1, no. 4, pp. 390–396,
1975.

[62] E. Carmel, “A Process Model for Packaged Software Development,” Engineering Man-
agement, IEEE, vol. 42, no. 1, pp. 50–61, 1995.

[63] H.L. Schachter, “The role played by Frederick Taylor in the rise of the academic manage-
ment fields,” Journal of Management History, vol. 16, no. 4, pp. 437–448, 2010.

[64] N. Ali and H. Edison, “Towards innovation measurement in software industry,” Master’s
thesis, Blekinge Institute of Technology, May 2010.

[65] P. Banerjee, “Some indicators of dynamic technological competencies: understanding of
Indian software managers,” Technovation, vol. 23, no. 7, pp. 593–602, Jul. 2003.

[66] P. Brudlo, “Entrepreneurship in internet business,” in 1st International Conference on
Information Technology, May 2008, pp. 1 –4.

[67] T. Burger-Helmchen, “Capabilities in small high-tech firms: a case of plural-
entrepreneurship,” Journal of Small Business and Enterprise Development, vol. 16, no. 3,
pp. 391 – 405, 2009.

[68] O.P. Hilmola, P. Helo, and L. Ojala, “The value of product development lead time in
software startup,” System Dynamics Review, vol. 19, no. 1, pp. 75–82, 2003.

[69] O.P. Hilmola, “Question of software start-up finance: system dynamics simulation anal-
ysis,” World Rev. Sci. Technol. Sustain. Dev. (Switzerland), vol. 6, no. 2-4, pp. 204 – 16,
2009.

[70] E. Carmel, “Time-to-completion in software package startups,” Proceedings of the System
Sciences, 1994., pp. 498–507, 1994.

[71] G. Coleman, “eXtreme Programming (XP) as a ”Minimum” Software Process : A
grounded theory,” in Proceedings of the 28th Annual International Computer Software
and Applications Conference, 2004, pp. 4–5.



www.manaraa.com

References 176

[72] G. Coleman, “Practice Not Process : Improving the Capability of Software Startups,”
2004, proposal at Department of Computing and Mathematics, Duldalk Institute of Tech-
nology.

[73] M. Lehman, “Programs, life cycles, and laws of software evolution,” in Proceedings of the
IEEE, vol. 68, no. 9, Sep. 1980, pp. 1060 – 1076.

[74] R. Banker and G. Davis, “Software development practices, software complexity, and soft-
ware maintenance performance: A field study,” Management Science, 1998.

[75] P. Thiel. Notes on CS183. [Online]. Available: http://blakemasters.tumblr.com/post/
21742864570/peter-thiels-cs183-startup-class-6-notes-essay (Accessed : Aug. 25, 2012).

[76] S. Ambler, “Lessons in agility from Internet-based development,” IEEE Software, no.
April, pp. 66–73, 2002.

[77] P. Tingling, “Extreme programming in action: a longitudinal case study,” Proceedings of
the 12th international conference, pp. 242–251, 2007.

[78] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change (2nd Edi-
tion). Addison-Wesley Professional, 2004.

[79] A. da Silva and F. Kon, “Xp south of the equator: An experience implementing xp in
brazil,” Extreme Programming and Agile Processes, pp. 10–18, 2005.

[80] R. Deias and G. Mugheddu, “Introducing XP in a start-up,” European Internet Services
Company, 2002.

[81] D. Yo�e, “Building a company on Internet time: Lessons from netscape,” California
Management Review, vol. 4, no. 3, 1999.

[82] N. Gautam and N. Singh, “Lean product development: Maximizing the customer per-
ceived value through design change (redesign),” International Journal of Production Eco-
nomics, vol. 114, no. 1, pp. 313–332, Jul. 2008.

[83] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software development
methods,” Relatório Técnico, Finlândia, 2002.

[84] M. Taipale, “Huitale - A story of a Finnish lean startup,” in Proceedings of the First
International Conference, vol. 65 LNBIP, Helsinki, Finland, 2010, pp. 111–114.

[85] K. Kuvinka, “Scrum and the Single Writer,” in Proceedings of Technical Communication
Summit, no. May, 2011, pp. 18–19.

[86] C. Midler and P. Silberzahn, “Managing robust development process for high-tech star-
tups through multi-project learning: The case of two European start-ups,” International
Journal of Project Management, vol. 26, no. 5, pp. 479–486, Jul. 2008.

[87] S. Yogendra, “Aligning business and technology strategies: a comparison of established
and start-up business contexts,” in Management Conference, 2002.

[88] J. Zettel, F. Maurer, J. Münch, and L. Wong, “LIPE: a lightweight process for e-business
startup companies based on extreme programming,” Product Focused Software Process
Improvement, pp. 255–270, 2001.

[89] E. Deakins and S. Dillon, “A helical model for managing innovative product and ser-
vice initiatives in volatile commercial environments,” International Journal of Project
Management, vol. 23, no. 1, pp. 65–74, Jan. 2005.

[90] M. Fayad, “Process assessment considered wasteful,” Communications of the ACM,
vol. 40, no. 11, pp. 125–128, 1997.

http://blakemasters.tumblr.com/post/21742864570/peter-thiels-cs183-startup-class-6-notes-essay
http://blakemasters.tumblr.com/post/21742864570/peter-thiels-cs183-startup-class-6-notes-essay


www.manaraa.com

References 177

[91] J. Mater and B. Subramanian, “Solving the software quality management problem in
Internet startups,” in Proceedings of the 18th annual pacific northwest software quality
conference, 2000, pp. 297–306.

[92] B. Mirel, “Product, process, and profit: the politics of usability in a software venture,”
ACM Journal of Computer Documentation (JCD), vol. 24, no. 4, pp. 185–203, 2000.

[93] E. Kim and S. Tadisina, “Factors impacting customers’ initial trust in e-businesses: an
empirical study,” in Proceedings of the 38th Annual Hawaii International Conference on
System Sciences, vol. 07, 2005, pp. 1–10.

[94] R. Hanna and T.U. Daim, “Information technology acquisition in the service sector,”
International Journal of Services Sciences, vol. 3, no. 1, p. 21, 2010.

[95] S. Jansen, S. Brinkkemper, and I. Hunink, “Pragmatic and Opportunistic Reuse in Inno-
vative Start-up Companies,” Software, IEEE, pp. 42–49, 2008.

[96] D. Wall, “Using open source for a profitable startup,” Computer, vol. 34, no. 12, pp. 158
–160, dec 2001.

[97] L. Bean and D.D. Hott, “Wiki: A speedy new tool to manage projects,” Journal of
Corporate Accounting & Finance, vol. 16, no. 5, pp. 3–8, Jul. 2005.

[98] Rob Walling, Start Small, Stay Small: A developer’s Guide to Launching a Startup. The
Numa Group, 2010.

[99] M. Marmer, B.L. Herrmann, E. Dogrultan, R. Berman, C. Eesley, and S. Blank, “Startup
Genome Report Extra: Premature Scaling,” Startup Genome, Tech. Rep., 2011.

[100] Microsoft, Microsoft Application Architecture Guide. Microsoft Press, 2009.

[101] V.R. Basili, “Software modeling and measurement: the goal/question/metric paradigm,”
Institute for Advanced Computer Studies - University of Maryland, College Park, MD,
USA, Tech. Rep., 1992.

[102] Engineering Village. [Online]. Available: http://www.engineeringvillage2.org/ (Accessed
: Aug. 25, 2012).

[103] Colin Robson, Real World Research: A Resource for Social Scientists and Practitioner-
Researchers. John Wiley and Sons, 2009.

[104] M. Kasunic, “Designing an E↵ective Survey,” Carnegie Mellon Software Engineering
Institute, Tech. Rep., 2005. [Online]. Available: www.sei.cmu.edu/pub/documents/05.
reports/pdf/05hb004.pdf

[105] B.G. Glaser, Theoretical sensitivity : advances in the methodology of grounded theory.
Sociology Press, 1978, vol. 2.

[106] T. Dyba, B. Kitchenham, and M. Jorgensen, “Evidence-based software engineering for
practitioners,” Software, IEEE, vol. 22, no. 1, pp. 58 – 65, Feb 2005.

[107] B. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based software engineering,” in
Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on,
May 2004, pp. 273 – 281.

[108] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Re-
views in Software Engineering,” Keele University and Durham University Joint Report,
Tech. Rep. EBSE 2007-001, 2007.

[109] T. Dyb̊a, V.B. Kampenes, and D.I. Sjø berg, “A systematic review of statistical power in
software engineering experiments,” Information and Software Technology, vol. 48, no. 8,
pp. 745–755, Aug. 2006.

http://www.engineeringvillage2.org/
www.sei.cmu.edu/pub/documents/05.reports/pdf/05hb004.pdf
www.sei.cmu.edu/pub/documents/05.reports/pdf/05hb004.pdf


www.manaraa.com

References 178

[110] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, “Using Mapping Studies in
Software Engineering,” in Proceedings of PPIG 2008. Lancaster University, 2008, pp.
195–204.

[111] S. Rumsey, How to find information : a guide for researchers. McGraw-Hill, 2008.

[112] ACM Search. [Online]. Available: http://dl.acm.org/advsearch.cfm (Accessed : Aug. 25,
2012).

[113] IEEExplore. [Online]. Available: http://ieeexplore.ieee.org/ (Accessed : Aug. 25, 2012).

[114] Web of Knowledge. [Online]. Available: http://wokinfo.com/ (Accessed : Aug. 25, 2012).

[115] Scopus. [Online]. Available: http://www.scopus.com/ (Accessed : Aug. 25, 2012).

[116] Google Scholar. [Online]. Available: http://scholar.google.com/ (Accessed : Aug. 25,
2012).

[117] BibDesk. [Online]. Available: http://bibdesk.sourceforge.net/ (Accessed : Aug. 25, 2012).

[118] T. Dyb̊aand T. Dingsø yr, “Empirical studies of agile software development: A systematic
review,” Information and Software Technology, vol. 50, no. 9-10, pp. 833–859, Aug. 2008.

[119] M. Jorgensen and M. Shepperd, “A systematic review of software development cost esti-
mation studies,” Software Engineering, IEEE Transactions on, vol. 33, no. 1, pp. 33 –53,
Jan. 2007.

[120] A. Sayers, “Tips and tricks in performing a systematic review,” Br J Gen Practice, vol. 1,
no. 57, pp. 542–759, 2007.

[121] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and industrial relevance
of technology evaluations,” Empirical Software Engineering, vol. 16, no. 3, pp. 365–395,
Oct. 2010.

[122] M. Ivarsson and T. Gorschek, “Technology transfer decision support in requirements
engineering research: a systematic review of rej,” Requir. Eng., vol. 14, no. 3, pp. 155–
175, Jun. 2009.

[123] M. Unterkalmsteiner, T. Gorschek, A. Islam, C.K. Cheng, R. Permadi, and R. Feldt,
“Evaluation and measurement of software process improvement – a systematic literature
review,” Software Engineering, IEEE Transactions on, vol. 38, no. 2, pp. 398 –424, March
2012.

[124] T. Saracevic, “Evaluation of evaluation in information retrieval,” in Proceedings of the
18th annual international ACM SIGIR conference on Research and development in in-
formation retrieval, ser. SIGIR ’95. New York, NY, USA: ACM, 1995, pp. 138–146.

[125] M. Wood, J. Daly, J. Miller, and M. Roper, “Multi-method research: an empirical inves-
tigation of object-oriented technology,” Journal of Systems and Software, vol. 48, no. 1,
pp. 13–26, Aug. 1999.

[126] O.W. Bertelsen, “Toward A Unified Field Of SE Research And Practice,” IEEE Software,
vol. 14, no. 6, pp. 87–88, 1997.

[127] J. Corbin and A. Strauss, “Grounded theory research: Procedures, canons, and evaluative
criteria,” Qualitative Sociology, vol. 13, no. 1, pp. 3–21, 1990.

[128] A.L. Strauss and J.M. Corbin, Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory, P. Labella, Ed. Sage Publications, 1998, vol. 2nd.

http://dl.acm.org/advsearch.cfm
http://ieeexplore.ieee.org/
http://wokinfo.com/
http://www.scopus.com/
http://scholar.google.com/
http://bibdesk.sourceforge.net/


www.manaraa.com

References 179

[129] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in software engineering: an introduction. Norwell, MA, USA: Kluwer Academic
Publishers, 2000.

[130] C.W. Dawson, Projects in Computing and Information Systems A Student ’ s Guide.
Pearson Prentice Hall, 2009.

[131] Rewards for Startups. [Online]. Available: http://rewards.softwarestartups.org/ (Ac-
cessed : Aug. 25, 2012).

[132] Mashape. [Online]. Available: http://mashape.com (Accessed : Aug. 25, 2012).

[133] Blomming. [Online]. Available: http://blomming.com (Accessed : Aug. 25, 2012).

[134] Searcheeze. [Online]. Available: http://www.searcheeze.com (Accessed : Aug. 25, 2012).

[135] Proliker. [Online]. Available: http://proliker.com (Accessed : Aug. 25, 2012).

[136] Wedding Snaps. [Online]. Available: http://weddingsnap.com (Accessed : Aug. 25, 2012).

[137] Podium. [Online]. Available: http://podium.younoodle.com (Accessed : Aug. 25, 2012).

[138] Mangatar. [Online]. Available: http://www.mangatar.net (Accessed : Aug. 25, 2012).

[139] Circleme. [Online]. Available: http://circleme.com (Accessed : Aug. 25, 2012).

[140] Timedoctor. [Online]. Available: http://www.timedoctor.com (Accessed : Aug. 25, 2012).

[141] The Beta Family. [Online]. Available: http://thebetafamily.com (Accessed : Aug. 25,
2012).

[142] Next. [Online]. Available: http://www.nextopenspace.it (Accessed : Aug. 25, 2012).

[143] Amen. [Online]. Available: https://getamen.com. (Accessed : Aug. 25, 2012).

[144] Jonh W. Creswell and Dana Miller, “Determining validity in qualitative inquiry,” Theory
into practice, vol. 39, no. 3, pp. 124–130, 2000.

[145] MIT License. [Online]. Available: http://www.opensource.org/licenses/mit-license.php/
(Accessed : Aug. 25, 2012).

[146] C. Giardino and N. Paternoster. Interview Package. [Online]. Available: https://github.
com/adv0r/BTH-Interview-Package, [Aug. 25, 2012).

[147] H.M. Edwards, S. McDonald, and S. Michelle Young, “The repertory grid technique: Its
place in empirical software engineering research,” Information and Software Technology,
vol. 51, no. 4, pp. 785–798, Apr. 2009.

[148] G.A. Kelly, A Theory of Personality: The Psychology of Personal Constructs. Norton,
1963, vol. 1.

[149] R.K. Yin, Case study research: design and methods, R.K. Yin, Ed. Sage Publications,
Inc, 1994, vol. 1, no. 3.

[150] W.J. Orlikowski, “CASE Tools as Organizational Change: Investigating Incremental and
Radical Changes in Systems Development,” MIS Quarterly, vol. 17, no. 3, p. 309, Sep.
1993.

[151] G. Coleman, Software process in practice: A Grounded Theory of the irish software in-
dustry. Springer, 2006.

[152] J. Hietala, J. Kontio, J.P. Jokinen, and J. Pyysiainen, “Challenges of software product
companies: results of a national survey in finland,” in Software Metrics, 2004. Proceed-
ings. 10th International Symposium on, sept. 2004, pp. 232 – 243.

http://rewards.softwarestartups.org/
http://mashape.com
http://blomming.com
http://www.searcheeze.com
http://proliker.com
http://weddingsnap.com
http://podium.younoodle.com
http://www.mangatar.net
http://circleme.com
http://www.timedoctor.com
http://thebetafamily.com
http://www.nextopenspace.it
https://getamen.com.
http://www.opensource.org/licenses/mit-license.php/
https://github.com/adv0r/BTH-Interview-Package
https://github.com/adv0r/BTH-Interview-Package


www.manaraa.com

References 180

[153] A. Bryant and K. Charmaz, The SAGE handbook of grounded theory, A. Bryant and
K. Charmaz, Eds. SAGE Publications, 2007.

[154] List of cognitive biases (Wikipedia). [Online]. Available: http://en.wikipedia.org/wiki/
List of cognitive biases (Accessed : Aug. 25, 2012).

[155] J.G. Brodman and D.L. Johnson, “What small business and small organizations say
about the cmm: experience report,” in Proceedings of the 16th international conference
on Software engineering, ser. ICSE. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1994, pp. 331–340.

[156] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion,” Requir. Eng., vol. 11,
no. 1, pp. 102–107, Dec. 2005.

[157] M. Shaw, “Writing good software engineering research papers,” in International Confer-
ence on Software Engineering, Proceedings. 25th, May 2003, pp. 726 – 736.

[158] M. Häsel, N. Breugst, and T. Kollmann, “IT Competence in Internet Founder Teams
An Analysis of Preferences and Product Innovativity,” Business & Information System
Engineering, vol. 52, no. 4, pp. 210–217, 2010.

[159] R. Stanfill and T. Astleford, “Improving Entrepreneurship Team Performance through
Market Feasibility Analysis, Early Identification of Technical Requirements, and Intellec-
tual Property Support,” in American Society for Engineering Education Annual Confer-
ence, 2007.

[160] D. Wood, “Open Source Software Strategies for Venture-Funded Startups,” MIND Lab-
oratory, University of Maryland, Tech. Rep. TR-MS1287, 2005.

[161] H.J. Steenhuis and E. de Bruijn, “Innovation and technology based economic develop-
ment: Are there short-cuts?” inManagement of Innovation and Technology, 2008. ICMIT
2008. 4th IEEE International Conference on, Sept. 2008, pp. 837 –841.

[162] S.C. Li, “The role of value proposition and value co-production in new internet startups:
How new venture e-businesses achieve competitive advantage,” in Management of Engi-
neering and Technology, Portland International Center for, Aug. 2007, pp. 1126 –1132.

[163] S.l. Lai, “Chinese Entrepreneurship in the Internet Age : Lessons from Alibaba.com,”
World Academy of Science, Engineering and Technology, vol. 72, pp. 405–411, 2010.

[164] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evidence in global software
engineering: a systematic review,” Empirical Software Engineering, vol. 15, no. 1, pp.
91–118, Dec. 2009.

[165] C. von Wangenheim, A. Anacleto, and C. Salviano, “Helping small companies assess
software processes,” Software, IEEE, vol. 23, no. 1, pp. 91 –98, Feb. 2006.

[166] Crunchbase. [Online]. Available: http://www.crunchbase.com/ (Accessed : Aug. 25,
2012).

[167] M.L.S. Thomas, B. Jabine, “Cognitive aspects of survey methodology: Building a bridge
between disciplines,” National Research Council, Tech. Rep., 1984.

[168] E.M. Rogers, Di↵usion of Innovations. Free Press, 1995.

[169] C.M. Christensen and M.E. Raynor, The Innovator’s Solution. Harvard Business School
Press, 2003.

[170] J. O↵utt, “Quality attributes of web software applications,” IEEE Softw., vol. 19, no. 2,
pp. 25–32, Mar. 2002.

http://en.wikipedia.org/wiki/List_of_cognitive_biases
http://en.wikipedia.org/wiki/List_of_cognitive_biases
http://www.crunchbase.com/


www.manaraa.com

References 181

[171] J.A. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House, 2000, vol. 12.

[172] J. Pearl, “Why there is no statistical test for confounding, why many think there is, and
why they are almost right,” UCLA Cognitive Systems Laboratory, Tech. Rep., 1998.

[173] M. Staples, M. Niazi, R. Je↵ery, A. Abrahams, P. Byatt, and R. Murphy, “An exploratory
study of why organizations do not adopt CMMI,” Journal of Systems and Software,
vol. 80, no. 6, pp. 883–895, Jun. 2007.

[174] The Inventors of Six Sigma. [Online]. Available: http://web.archive.org/web/
20051106025733/http://www.motorola.com/content/0,,3079,00.html (Accessed : Aug.
25, 2012).

[175] F. Steven and S. Montgomery, “Fisher’s fundamental theorem of natural selection,”
TREE, vol. 7, no. 3, pp. 92–95, 1992.

[176] F. Brooks Jr, “No Silver Bullet — Essence and Accidents of Software Engineering,”
Computer, vol. 20, no. 4, pp. 10–19, 1987.

[177] R. Cooper, “An Investigation into the New Product Process : Steps, Deficiencies, and
Impact,” Journal of product innovation management, vol. 3, no. 2, pp. 71–85, 1986.

[178] T. DeMarco, Peopleware: Productive Projects and Teams (Second Edition). Dorset
House; 2nd edition, 1999.

[179] S. Adolph and P. Kruchten, “Reconciling Perspectives: How People Manage the Process
of Software Development,” in AGILE Conference. IEEE, Aug. 2011, pp. 48–56.

[180] A. Cockburn, “Characterizing people as non-linear, first-order components in software
development.” Multi-Conference on Systems, Cybernetics and Informatics, Orlando,
Florida, Tech. Rep., 1999.

[181] G. Cugola and C. Ghezzi, “Software processes: a retrospective and a path to the future,”
Software Process: Improvement and Practice, vol. 4, no. 3, pp. 101–123, 1998.

[182] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1998.

[183] B.T.A. Stewart and N. Issue, “How to Think With Your Gut Business 2 . 0,” How to
Think With Your Gut, pp. 1–6, 2002.

[184] G. Cheung and C. Chan, “The satir model and cultural sensitivity: A hong kong reflec-
tion,” Contemporary Family Therapy, vol. 24, no. 1, pp. 199–215, 2002.

[185] S. of Accenture, “Shared Services Start-Up: From Launch to Stabilization,” Accenture,
Tech. Rep., 2007.

[186] G. Dickson, “A programmatic approach to information system research : an experimen-
talist’s view,” The Information Systems Research Challenge : Experimental Research
Methods, pp. 147–170, 1989.

[187] K.M. Eisenhardt and K.M. Eisenhardt, “Building Theories from Case Study Research,”
The Academy of Management Review, vol. 14, no. 4, pp. 532–550, 2007.

[188] S. Basri and R.V.O. Connor, “Towards an Understanding of Software Development Pro-
cess Knowledge in Very Small Companies,” Informatics Engineering and Information
Science, vol. 253, pp. 62–71, 2011.

[189] P.Y. Martin, “Grounded theory and organizational research,” The Journal of Applied
Behavioral Science, vol. 22, no. 2, pp. 141–157, Apr. 1986.

http://web.archive.org/web/20051106025733/http://www.motorola.com/content/0,,3079,00.html
http://web.archive.org/web/20051106025733/http://www.motorola.com/content/0,,3079,00.html


www.manaraa.com

References 182

[190] L. Ramer, “Quantitative versus qualitative research?” Journal of obstetric, gynecologic,
and neonatal nursing : Jognn / Naacog, vol. 18, no. 1, pp. 7–8, 1989.

[191] D. Berry, “Academic Legitimacy of the Software Engineering Discipline,” Software Engi-
neering Institute, Tech. Rep. November, 1992.

[192] D. Martens, C. Vanhoutte, S. De Winne, B. Baesens, L. Sels, and C. Mues, “Identifying
financially successful start-up profiles with data mining,” Expert Systems with Applica-
tions, vol. 38, no. 5, pp. 5794 – 5800, 2011.

[193] J. Ruokolainen, “Gear-up your software start-up company by the first reference
customer—nomothetic research study in the Thai software industry,” Technovation,
vol. 25, no. 2, pp. 135–144, Feb. 2005.

[194] J. Ruokolainen and B. Igel, “The factors of making the first successful customer reference
to leverage the business of start-up software company — multiple case study in Thai
software industry,” Technovation, vol. 24, no. 9, pp. 673–681, Sep. 2004.

[195] J. Livingston, Founders at Work: Stories of Startups’ Early Days. Apress, 2008.

[196] J. Azar and R. Smith, “Value-oriented requirements prioritization in a small development
organization,” IEEE software, vol. 24, no. 1, pp. 32–37, Jan. 2007.

[197] M.E. Fayad, M. Laitinen, and R.P. Ward, “Software Engineering in the Small,” Commu-
nications of the ACM, vol. 43, no. 3, pp. 115–118, 2000.

[198] A. Ginige and S. Murugesan, “Web engineering: an introduction,” IEEE Multimedia,
vol. 8, no. 1, pp. 14–18, 2001.

[199] M.A. Cusumano and D.B. Yo�e, “Software development on internet time,” Computer,
vol. 32, no. 10, pp. 60–69, Oct. 1999.

[200] K. Wiegers, “Software process improvement in web time,” IEEE Softw., vol. 16, no. 4,
pp. 78–86, Jul. 1999.

[201] Principles behind the Agile Manifesto. [Online]. Available: http://www.agilemanifesto.
org/principles.html (Accessed : Aug. 25, 2012).

[202] L. Rising, “The Scrum Software Development Process for Small Teams,” Software, IEEE,
no. August, 2000.

[203] M. Zayko, “A Systematic View of Lean Principles : Lean Enterprise Management,” in
Lean Enterprise Institute, 2006, pp. 1–16.

[204] L.J. Krajewski, B.E. King, L.P. Ritzman, and D.S. Wong, “Kanban, MRP, and Shaping
the Manufacturing Environment,” Management Science, vol. 33, no. 1, pp. 39–57, 1987.

[205] D.J. Anderson, Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, 2010.

[206] N. Nikitina, M. Kajko-Mattsson, and M. Strale, “From scrum to scrumban: A case study
of a process transition,” in Software and System Process (ICSSP), 2012 International
Conference on, June 2012, pp. 140 –149.

[207] N. Wasserman, The Founder’s Dilemmas: Anticipating and Avoiding the Pitfalls That
Can Sink a Startup. Kau↵man Foundation, 2012.

[208] T. Ho↵. Startups Are Creating A New System Of The World For IT. [Online]. Avail-
able: http://highscalability.com/blog/2012/5/7/startups-are-creating-a-new-system-of-
the-world-for-it.html (Accessed : Nov. 06, 2012).

http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://highscalability.com/blog/2012/5/7/startups-are-creating-a-new-system-of-the-world-for-it.html
http://highscalability.com/blog/2012/5/7/startups-are-creating-a-new-system-of-the-world-for-it.html


www.manaraa.com

References 183

[209] G. Kawasaki, The Art of the Start. Penguin Books Ltd, 2004.

[210] R.G. McGrath and I.C. MacMillan, The Entrepreneurial Mindset: Strategies for Contin-
uously Creating Opportunity in an Age of Uncertainty. Harvard Business School Press,
2000, vol. 26, no. 3.

[211] G.A. Moore, Crossing the Chasm: Marketing and Selling Disruptive Products to Main-
stream Customers. Harper Paperbacks, 2002, vol. 24, no. April 2002.

[212] M. Marmer, B.L. Herrmann, E. Dogrultan, R. Berman, C. Eesley, and S. Blank, “Startup
Genome Report Extra: Premature Scaling,” Startup Genome, Tech. Rep., 2011.

[213] Murphy lifecycle. [Online]. Available: http://www.skmurphy.com/startup-stages/ (Ac-
cessed : Aug. 25, 2012).

[214] F. Destin. Startup lifecycle. [Online]. Available: http://prezi.com/nfvyxijdmj7v/startup-
lifecycle-by-fred-destin/ (Accessed : Aug. 25, 2012).

[215] Corporate lifecycle. [Online]. Available: http://www.adizes.com/corporate lifecycle.html
(Accessed : Aug. 25, 2012).

[216] Angel investing. [Online]. Available: http://gust.com/angel-investing/startup-blogs/
2011/11/22/the-right-investors-for-the-right-stage/ (Accessed : Aug. 25, 2012).

[217] Startup lifecycle. [Online]. Available: http://www.shirlawscoaching.co.uk/
shirlawsresources/2011/8/25/article-from-paul-grahams-trough-of-sorrow-to-infinity-
and-b.html (Accessed : Aug. 25, 2012).

[218] J.L. Nesheim, High Tech Start Up, Revised And Updated. Free Press, 2000.

[219] I. Heitlager, S. Jansen, R. Helms, and S. Brinkkemper, “Understanding the dynamics of
product software development using the concept of coevolution,” in Proceedings of the
Second International IEEE Workshop on Software Evolvability. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 16–22.

[220] Market curve lifecycle. [Online]. Available: http://techcrunch.com/2012/04/01/the-
market-curve-the-life-cycle/ (Accessed : Aug. 25, 2012).

[221] GT Categories. [Online]. Available: https://workflowy.com/shared/3f8945a0-bd36-68bf-
9276-355244c75cd4/ (Accessed : Aug. 25, 2012).

[222] S. Jamieson, “Likert scales: How to (ab)use them,” Medical Education, vol. 38, no. 12,
pp. 1217–1218, 2004.

[223] G. Normann, “Likert scales, levels of measurement and the “laws” of statistics,” Advances
in Health Science Education, vol. 15, no. 5, pp. 625–632, 2010.

[224] E.L.C. Law, V. Roto, M. Hassenzahl, A.P. Vermeeren, and J. Kort, “Understanding,
scoping and defining user experience: a survey approach,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’09, New York, NY, USA,
2009, pp. 719–728.

http://www.skmurphy.com/startup-stages/
http://prezi.com/nfvyxijdmj7v/startup-lifecycle-by-fred-destin/
http://prezi.com/nfvyxijdmj7v/startup-lifecycle-by-fred-destin/
http://www.adizes.com/corporate_lifecycle.html
http://gust.com/angel-investing/startup-blogs/2011/11/22/the-right-investors-for-the-right-stage/
http://gust.com/angel-investing/startup-blogs/2011/11/22/the-right-investors-for-the-right-stage/
http://www.shirlawscoaching.co.uk/shirlawsresources/2011/8/25/article-from-paul-grahams-trough-of-sorrow-to-infinity-and-b.html
http://www.shirlawscoaching.co.uk/shirlawsresources/2011/8/25/article-from-paul-grahams-trough-of-sorrow-to-infinity-and-b.html
http://www.shirlawscoaching.co.uk/shirlawsresources/2011/8/25/article-from-paul-grahams-trough-of-sorrow-to-infinity-and-b.html
http://techcrunch.com/2012/04/01/the-market-curve-the-life-cycle/
http://techcrunch.com/2012/04/01/the-market-curve-the-life-cycle/
https://workflowy.com/shared/3f8945a0-bd36-68bf-9276-355244c75cd4/
https://workflowy.com/shared/3f8945a0-bd36-68bf-9276-355244c75cd4/


www.manaraa.com

Appendix A

Appendix

A.1 Conventions

Figure A.1 describes guideline symbols that are used in the representation of
figures within the document. Note that all the figures are read from the left to
right.

Figure A.1: Conventions

A.2 Related areas review

This appendix contains the results of multiple non-systematic reviews that have
been executed to explore sibling areas. Doing this work helped us in getting a
better understanding of the ecosystem in which a startup lives and operates and
gives us the possibility of identifying specific areas of interest. The subsections
included in this appendix are independent from one another, namely:

184



www.manaraa.com

Appendix A. Appendix 185

• Managing software startups (see Subsection A.2.1).
• Software engineering in the small (see Subsection A.2.2).
• Web engineering (see Subsection A.2.3).
• Lean/Agile methodologies (see Subsection A.2.4).
• Grey literature review (see Subsection A.2.5).

A.2.1 Managing software startups

During the systematic mapping of the SE literature, a clear subset of articles
with a managerial background emerged. Despite these articles didn’t fit in our
selection criteria, in the data screening process we saved them into a separate
file (see Subsection 4.2.3). This chapter contains a high-level overview of the
important findings regarding management of software startups.

What makes startups fail can be determined by diverse factors. Despite the
controversial findings of researchers in the last years, one finding that stakes in
the ground is reported by practitioners and academics: the believe the success
rate of startups has the potential to dramatically increase economic growth on
global scale [22].

Among many resources, the knowledge management has been highlighted as
essential resource to keep track in today’s fast-paced economy [192]. Among oth-
ers, customer development has become a widely used process [17].. According to
Ruokalainen’s research [193, 194] the focus of success moves to the ability of find-
ing the first customer and to the ability of expanding the business abroad, after
saturating the limited size of the local market. From the marketing viewpoint,
the credibility of a startup is crucial, and it must be found with the help of the
first customer, trying to develop the business concept and not by focusing only
on technology solutions.

The dispute between those advocating for “product first” and those sustaining
“market first” seems to be blown away by the unanimous acceptance that for
startup success the most important factor is the product/market fit, i.e. , the
right product for the right market with the right timing. The recent book “The
Lean Startup” by Eric Ries [7], reviewed in Section 7.2, addresses this specific
problem.

A.2.2 Software Engineering in the small

In terms of the number of early stage employees, startups are small companies.
On the other hand it is not true that a small company is a startup [13]: some
software companies with less than ten employees have been operating under stable
conditions for more than a decade whilst most startups live in a chaotic domain,
failing, getting acquired or evolving in established companies in a very short time-
frame [195]. Furthermore researchers consider small software companies with less



www.manaraa.com

Appendix A. Appendix 186

than 50 employees [49], whilst the majority of startups founding teams are formed
by less than five people.

But despite the essential di↵erences between small companies and startups,
when it comes to software engineering both deal with a limited number of human
resources. Hence, it is worth giving a small overview of most important results
achieved by researchers and practitioners in such a closely related field. Despite
several SPI models for small companies have been proposed in the last years
(CMM/CMMI, ISO 9001, ISO/IEC 15504), small companies still find di�cult
applying them since what they need is a customized assessment method within
reasonable cost and time [165].

Introducing proper process improvement activities in small companies (for
instance requirements prioritization) can determine not only the success or failure
of the project but also the survivability of the entire company [196]. Indeed, the
need of e�cient and e↵ective software engineering solutions brought engineers to
be flexible and more reactive to context issue instead of prescribing activities to
follow [49]. Hence, the existing practices applied in large companies are hard to
apply in small contexts. In this regard, industry has recognized that integrated
environments that you can’t adapt to a company-specific process don’t enhance
productivity and quality [197].

A.2.3 Web engineering

In 1998, Web engineering was established as a new discipline in view of substantial
di↵erences revealed from the traditional software engineering. The rapid changes
in web systems, evolving in their functionalities, scope, content and use are more
frequent than traditional software, information and engineering systems [198, 57].

In web applications, the main reason why small companies always strive in
conducting SPI models relies on the regular trade-o↵ among “feature slip”, “time-
to-market” and “software quality”. The same trade-o↵s go through the level of
process definition and adopted formality. Especially for new projects, companies
focus more on people and product rather than processes. In fact, managers believe
that if people are mature and talented, there is less need for definition of processes
[55]. A good experience paper written by a practitioner in the field shows other
small di↵erences between web and traditional software companies, such as: lack
of quality assurance, short building time, coding freezing periods.

Nevertheless, web-based systems become more and more large and complex,
impacting negatively on product quality aspects. Since most of web-based sys-
tems development must be completed in the short term, as described in [56], web
engineering activities generally lack of integrated and formal testing methodolo-
gies. Moreover estimating process and product metrics, such as robustness and
maintainability, can be really challenging since formal requirements, analysis and
design are almost neglected [57].

Web and mobile companies introduce products faster than companies with



www.manaraa.com

Appendix A. Appendix 187

more stable technologies such as desktop or embedded software. In order to fos-
ter fast-track production, they must use more flexible development techniques
with short product life-cycle [199]. Being flexible and fast, as well as creative, are
important characteristics for success in the Internet era. The ability to rapidly
adapt to changes and to be able to introduce more disciplined process, are two
necessary capabilities, which help dealing with unpredictable markets. In fact,
as advocated in [200], even companies that works with cutting-edge technolo-
gies, rapid project development and heavy business pressures can improve their
methods for managing and implementing software projects by means of minimal
project management activities.

A.2.4 Lean/Agile development

In this section we provide a brief explanation of Lean and Agile software develop-
ment methodologies, which appear to be in line with the entrepreneurs demands
especially in Internet and mobile industries [54, 71].

As stated by Abhrahamsson in [83], “what makes a development method agile
is the case when it is incremental (small software releases, with rapid cycles),
cooperative (customer and developers working constantly together with close com-
munication), straightforward (the method itself is easy to learn and to modify,
well documented), and adaptive (able to make last moment changes).”

According to the original Manifesto [201], the principles are expression of
reaction against heavyweight methodologies in terms of:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

The most common implementations of Agile methodologies, among many oth-
ers [5, 118], are eXtreme Programming [78] (development-oriented) and Scrum
[202] (more project managment-oriented) [83].

On a higher level of abstraction Agile methodologies rely on the principles
derived from Lean manifacturing, which promote the elimination of anything that
doesn’t contribute to he creation of value for the final users [203]. Specifically,
eliminating waste means reducing useless meetings, tasks and documentation. It
also means eliminating time spent building features which are not necessary in
the short term since the environment is constantly changing and consequently
the needs of customers change [82].

A widely used Lean practice is known as Kanban, which was developed for
the first time in the Toyota production system [204]. Kanban is based on six core
principles [205], namely:



www.manaraa.com

Appendix A. Appendix 188

• Visualize workflow.

• Limit work in progress (WIP).

• Manage flow.

• Make policies explicit.

• Implement feedback loops.

• Improve collaboratively, evolve Experimentally (using models and the sci-
entific method).

Di↵erently from Scrum, the implementation of Kanban does not require a
sprint-based schedule, and it allows user stories to change status with a contin-
uous flow based on the Kanban board. In the literature it is possible to find
hybrid methodologies (e.g. Scrumban [206, 85] which combines Agile and Lean
principles).

A.2.5 Grey literature Review

Taking a quick look at the non peer-reviewed world, defined by Kitchenham
as grey literature [108], it is clear that today’s startup ecosystem is extremely
vast, and includes a wide set of personalities: hackers, entrepreneurs, investors,
managers, and developers, to name a few. What this community is lacking is the
presence of a strong technical support from empirical research. In this subsection
we review some of the most important books, which are relevant for this study.

Even if it is not strictly addressed to startups, one of the most important
book that many authors refer to, when talking about technological startups, is
The Innovator’s Dilemma [24], written in 1997 by Clayton Christensen from the
Harvard Business School. He discusses how outstanding companies, which had
their business oriented to customers’ needs and which aggressively invested in
new technologies, still loose their market leadership when confronted to disrup-
tive technologies1. The author explains how established companies are inclined
to develop sustainable technologies, which support incremental development of
existing solution in accordance to their customers’ needs. By means of lessons
learned from successes and failures of leading companies, this book demonstrates
how new entrants to the market that introduce a disruptive innovation can attack
small part of businesses, where established companies decide to don’t compete, in
view of an insu�cient profit perspective and afraid of corroding their main busi-
ness. Along with The Innovator’s Dilemma sequel, The Innovator’s Solution [169]
introduces specific suggestions for established companies to create autonomous

1Disruptive technology can be represented by a new product, a new technology to produce
a product, a new way to distribute a product or a new way to provide services.



www.manaraa.com

Appendix A. Appendix 189

division to pursue start-up’s like innovation. Similar themes are discussed and
analyzed in 2012’s book “The Founder’s Dilemmas” [207] of Harvard professor N.
Wasserman, who analyzes “the common pitfalls founders face and how to avoid
them”. Yet, it lacks technicalities and is rather oriented to the business perspec-
tive. Nevertheless, the book is based on a large survey conducted in the last 10
years with “more than 6,000” companies he confirms the di�culties in obtaining
empirical data about startups: “Data about startups and private companies in
general is not publicly available and is very hard to retrieve”.

One of the modern pioneer of software startups’ research is Steven Blank,
who has confirmed the profound diversity between startups and smaller versions
of large companies from a entrepreneurial management’s perspective. He, as prac-
titioner and academic, developed the Customer Development process, extensively
described in The Four Steps to the Epiphany [17] (2005) and The Startup Owner’s
Manual [59] (2012). In the course of attracting and keeping customers, Blank sug-
gests a process to place aside to the product development, which aims to discover
and validate the right market for an idea, by: building the right product features
that solve customers’ needs; testing the correct model and tactics for acquiring
and converting customers; and deploying the right organization and resources to
scale the business.

“The best student” that Blank has ever had was Eric Ries, now successful
entrepreneur and engineer, who is recognized for pioneering the Lean Startup
Movement, which combines the Japanese concept of Lean production with Blank’s
Customer development process, to establish a new sort of discipline. In his best-
seller book The Lean Startup [7], Ries presents how entrepreneurs in every settings
make the same mistakes: they build elaborate products before daring to test them
with final users, making decisions on wrong information. He introduced the con-
cept of “minimal viable product” (MVP), which is a strategy used for fast and
quantitative market testing of a product that has just those essential features
that allow the product to be released. From a technical perspective he developed
the Lean Startup model, which core is represented by the Build-Measure-Learn
feedback loop.



www.manaraa.com

Appendix A. Appendix 190

Figure A.2: Lean Startup cycle [7]

Through this model, he explains how it is important to test the riskiest ele-
ments of a startup’s plan, the parts on which everything depends.

To process these hypotheses (leap-of-faith assumptions) the startup must enter
the Build phase as quickly as possible with a MVP. As previously discussed
the MVP lacks many features that may prove essentials later on, but enables
a first deployment with a minimum amount of e↵ort and the least amount of
development time. Following the Build phase, the Measure phase determines
whether the product development e↵orts are leading to real progress. The aim
is to understand if the product is what the customers really want. Finally he
presents the Pivot concept, which is described in the Learn phase as “a change in
strategy without changing vision”. If the startup discovers that one of its essential
hypothesis is false, then it is time to make a major change to a new strategic
hypothesis. From the new hypothesis the Build-Measure-Learn feedback loop
restarts again. Even though many insights are not apparently applicable for the
context of early stage startups, unlike many authors in this field, Ries writes
clinically and intelligently how a startup could innovate with less waste.

According to the Lean Startup methodology, building something people want
is by providing a great first experience, improving Activation and Retention rates.
Activation refers to those actions that typically start with sign-up process and
end with key activities of the product. Retention refers to those actions which
maintain the users involved or engaged in the use of the product. Eventually, there
is a third metric which involves the endorsements of the product to new users,
called Referral. Since it is typically provided by a�liate programs and marketing
processes, it is not a main concern from a software engineering perspective.

He defines a start-up as a “human institution designed to create a new product
or service under conditions of extreme uncertainty”. The words human and un-
certainty are essential since he argues that a successful start-up doesn’t just rely
on a brilliant idea, but also requires managing people through all the challenges
of innovation and growth. According to Ries, startups that apply the lean method



www.manaraa.com

Appendix A. Appendix 191

achieve dramatically lower development costs, faster time to market, and higher
quality products in the years to come.

An extremely interesting group of researchers and entrepreneurs have recently
founded a startup (The Startup Genome) that is trying to disclose the patterns
behind startups’ failures. They conducted a large-scale survey among startups’
founders and they published the results, in summer 2012, in a technical report [22].
Another recent technical report on HighScalability.com [208] draw interesting
conclusion on how software startup are shaping the new scenario of distributes
software architectures in the cloud.

Other major contributions worth mentioning, but mainly focused on business
aspects and plans generation are: The Art Of The Start [209], Start Small, Stay
Small: A Developer’s Guide to Launching a Startup [98], Founders at Work: Sto-
ries of Startups’ Early Days [195],The Entrepreneurial Mindset [210] and Crossing
the Chasm [211].

A.2.6 Lifecycle models

From idea conception to the maturity level, in the literature, di↵erent lifecycle
models have been identified and reported in this section.

A prominent contribution from technical perspective is the model presented
by Crowne [10], who synthesized the startup lifecycle in four stages: startup,
stabilization, growth and maturity. Starting from the startup stage, the author
describes it as the phase in which startups create and refine the idea conception,
up the first sale. This time frame is characterized most from the need to assemble
a small executive team with the necessary skills to start to build the product.
The stabilization phase begins from the first sale, and it lasts when the product
is stable enough to be commissioned to a new customer without causing any
overhead on product development: being able to treat maintenance in such a way
that the development team preserve the same productivity. The growth phase
begins with a stable product development process and lasts when the market
size, share and growth rate have been established: all the business processes
necessary to support product development and sales. Finally, the startup evolves
to a mature organization, where the product development becomes robust and
predictable with proven processes for new product inventions. Only then, SPI
can be further adopted for incremental process improvements.

In both peer-reviewed and grey literature we retrieved many other startups
life-cycle models, defining the phases from di↵erent perspectives. The models are
not explained in detail, but only summarized and referenced in Table A.1.



www.manaraa.com

Appendix A. Appendix 192

Author Lifecycle stages Perspective
S. Blank [17] customer discovery; validation; creation; company building. Market
M. Marmer [212] discovery; validation;e�ciency; scale; sustain & conservation. Market
S. Murphy [213] ideas and team formation; open for business; early customers;

finding your niche;scaling up.
Business

F. Destin [214] start; lunch; build; chasm; scale; mature. Business
I. Adizes [215] courtship; infant, go-go; adolescence; prime; sta-

ble;aristocracy;early bureaucracy; bureaucracy; death.
Business

M. Zwilling [216] idea stage; early or embryonic stage; funding or rollout stage;
growth stage; exit stage.

Business

P. Graham [217] initiation; wearing o↵ of novelty; trough of sorrow; release
of improvement; crash of Ineptitude, wiggles of false hope,
promised land, acquisition of liquidity, upside of buyer.

Social

J. L. Neisheim [218] the idea; the demo; the prototype; the first product; the launch
(growth).

Product

I. Heitlager [219] fluid, transition time, specific. Innovation
D. Pepper [220] hype cycle;facing reality; lifto↵ to ultimate marketing opportu-

nity; sustainable market.
Market

Table A.1: Startup lifecycle models

Many of the models presented in Table A.1 are obtained from non-peer re-
viewed sources, and additionally we were not able to find a fine-grained model
describing the phases of an early-stage startup from a product perspective. There-
fore we proposed our own model in Section 7.3.

A.3 Systematic mapping study details

A.3.1 Search Strings

The search strings, utilized to retrieve relevant studies (see Subsection 4.2.2),
have been adapted to the underlying search technology, as shown in Table A.2.

String A - Compendex/Inspec [102]

(’early-stage firm’ OR ’early-stage company’ OR ’high-tech venture’ OR ’high-tech ventures’ OR ’high-
tech start-up’ OR ’high-tech start-ups’ OR ’high-tech startups’ OR ’high-tech startup’ OR ’start-up
company’ OR ’start-up companies’ OR ’startup company’ OR ’startup companies’ OR ’software startup’
OR ’lean startup’ OR ’lean start-up’ OR ’lean startups’ OR ’software startups’ OR ’software package
startups’ OR ’software package start-up’ OR ’software package start-ups’ OR ’software package startup’
OR ’IT start-ups’ OR ’IT start-up’ OR ’IT startup’ OR ’IT startups’ OR ’software start-up’ OR ’software
start-ups’ OR ’software product startup’ OR ’software product startups’ OR ’software start up’ OR ’web
startup’ OR ’web start-up’ OR ’web startups’ OR ’web start-ups’ OR’internet startup’ OR ’internet
start-up’ OR ’internet startups’ OR ’internet start-ups’ OR ’mobile startup’ OR ’mobile start-up’ OR
’mobile startups’ OR ’mobile start-ups’)AND (develop* OR engineer* OR model* OR construct* OR
implement* OR cod* OR creat* OR build*) AND (software OR product* OR service* OR process*
OR methodolog* OR tool* OR method* OR practice* OR artifact* OR artefact* OR qualit* OR ’non-
functional requirement’ OR ’non-functional requirements’ OR ilit* OR strateg*)

String B - IEEE xplore [113]

Table A.2 – Continued on next page



www.manaraa.com

Appendix A. Appendix 193

Table A.2 – Continued from previous page

(’early-stage firm’ OR ’early-stage company’ OR ’high-tech venture’ OR ’high-tech ventures’ OR ’start-
up company’ OR ’start-up companies’ OR ’startup company’ OR ’high-tech start-up’ OR ’high-tech
start-ups’ OR ’high-tech startups’ OR ’high-tech startup’ OR ’startup companies’ OR ’software startup’
OR ’lean startup’ OR ’lean start-up’ OR ’lean startups’ OR ’software startups’ OR ’software package
startups’ OR ’software package start-up’ OR ’software package start-ups’ OR ’software package startup’
OR ’IT start-ups’ OR ’IT start-up’ OR ’IT startup’ OR ’IT startups’ OR ’software start-up’ OR ’software
start-ups’ OR ’software product startup’ OR ’software product startups’ OR ’software start up’ OR ’web
startup’ OR ’web start-up’ OR ’web startups’ OR ’web start-ups’ OR’internet startup’ OR ’internet
start-up’ OR ’internet startups’ OR ’internet start-ups’ OR ’mobile startup’ OR ’mobile start-up’ OR
’mobile startups’ OR ’mobile start-ups’) AND (development OR developing OR engineer OR engineering
OR model OR construct* OR implement* OR cod* OR creat* OR build*) AND (software OR product
OR products OR service OR services OR process OR processes OR artifact* OR artefact* OR quality OR
qualities OR ’non-functional requirement’ OR ’non-functional requirements’ OR ilities OR methodology
OR methodologies OR tool OR tools OR method OR methods OR practice OR practices OR strategy
OR strategies)

String C - Scopus [115]

ABS((’early-stage firm’ OR ’early-stage company’ OR ’high-tech venture’ OR ’high-tech ventures’ OR
’start-up company’ OR ’start-up companies’ OR ’high-tech start-up’ OR ’high-tech start-ups’ OR ’high-
tech startups’ OR ’high-tech startup’ OR ’startup company’ OR ’startup companies’ OR ’software
startup’ OR ’lean startup’ OR ’lean start-up’ OR ’lean startups’ OR ’software startups’ OR ’software
package startups’ OR ’software package start-up’ OR ’software package start-ups’ OR ’software package
startup’ OR ’IT start-ups’ OR ’IT start-up’ OR ’IT startup’ OR ’IT startups’ OR ’software start-up’ OR
’software start-ups’ OR ’software product startup’ OR ’software product startups’ OR ’software start
up’ OR ’web startup’ OR ’web start-up’ OR ’web startups’ OR ’web start-ups’ OR’internet startup’
OR ’internet start-up’ OR ’internet startups’ OR ’internet start-ups’ OR ’mobile startup’ OR ’mobile
start-up’ OR ’mobile startups’ OR ’mobile start-ups’)AND (develop* OR engineer* OR model* OR
construct* OR implement* OR cod* OR creat* OR build*) AND (software OR product* OR service*
OR process* OR artifact* OR artefact* OR qualit* OR ’non-functional requirement’ OR ’non-functional
requirements’ OR ilit* OR methodolog* OR tool* OR method* OR practice* OR strateg*) )

Table A.2 – Continued on next page



www.manaraa.com

Appendix A. Appendix 194

Table A.2 – Continued from previous page

String D - ISI Web of Knowledge [114]

TS=((’early-stage firm’ OR ’early-stage company’ OR ’high-tech venture’ OR ’high-tech ventures’ OR
’start-up company’ OR ’start-up companies’ OR ’high-tech start-up’ OR ’high-tech start-ups’ OR ’high-
tech startups’ OR ’high-tech startup’ OR ’startup company’ OR ’startup companies’ OR ’software
startup’ OR ’lean startup’ OR ’lean start-up’ OR ’lean startups’ OR ’software startups’ OR ’software
package startups’ OR ’software package start-up’ OR ’software package start-ups’ OR ’software package
startup’ OR ’IT start-ups’ OR ’IT start-up’ OR ’IT startup’ OR ’IT startups’ OR ’software start-up’ OR
’software start-ups’ OR ’software product startup’ OR ’software product startups’ OR ’software start
up’ OR ’web startup’ OR ’web start-up’ OR ’web startups’ OR ’web start-ups’ OR’internet startup’
OR ’internet start-up’ OR ’internet startups’ OR ’internet start-ups’ OR ’mobile startup’ OR ’mobile
start-up’ OR ’mobile startups’ OR ’mobile start-ups’)AND (develop* OR engineer* OR model* OR
construct* OR implement* OR cod* OR creat* OR build*) AND (software OR product* OR service*
OR process* OR artifact* OR artefact* OR qualit* OR ’non-functional requirement’ OR ’non-functional
requirements’ OR ilit* OR methodolog* OR tool* OR method* OR practice* OR strateg*))

String E - ACM [112]

((Abstract:(’early-stage firm’ OR ’early-stage company’ OR ’high-tech venture’ OR ’high-tech ventures’
OR ’start-up company’ OR ’start-up companies’ OR ’startup company’ OR ’startup companies’ OR
’software startup’ OR ’lean startup’ OR ’lean start-up’ OR ’high-tech start-up’ OR ’high-tech start-ups’
OR ’high-tech startups’ OR ’high-tech startup’ OR ’lean startups’ OR ’software startups’ OR ’software
package startups’ OR ’software package start-up’ OR ’software package start-ups’ OR ’software package
startup’ OR ’IT start-ups’ OR ’IT start-up’ OR ’IT startup’ OR ’IT startups’ OR ’software start-up’ OR
’software start-ups’ OR ’software product startup’ OR ’software product startups’ OR ’software start
up’ OR ’web startup’ OR ’web start-up’ OR ’web startups’ OR ’web start-ups’ OR’internet startup’
OR ’internet start-up’ OR ’internet startups’ OR ’internet start-ups’ OR ’mobile startup’ OR ’mobile
start-up’ OR ’mobile startups’ OR ’mobile start-ups’)) AND (Abstract:(develop* OR engineer* OR
model* OR construct* OR implement* OR cod* OR creat* OR build*)) AND (Abstract:(’software’ OR
product* OR service* OR process* OR methodolog* OR tool* OR method* OR practice* OR artifact*
OR artefact* OR qualit* OR ’non-functional requirement’ OR ’non-functional requirements’ OR ilit*
OR strateg*)))

String F - Google Scholar [116]

(’software startup’ OR ’software startups’)AND (develop* OR engineer* OR cod* OR creat* ) AND
(software OR product* OR process* OR methodolog* OR tool* OR method* OR practice* OR artifact*
OR qualit* OR ’non-functional requirements’ OR strateg*)

Table A.2: Search strings

A.3.2 Selected studies overview

We extracted a brief one-line sentence which summarize the content of each
study and can be used by the reader to grasp the idea behind the articles without
reading the full text. A set of keywords have been assigned to each article during
the initial stages of creation of the classification schema (see analysis of results in
Section 5.1). The result of this process is presented in Table A.3.



www.manaraa.com

Appendix A. Appendix 195

Ref. Author (year) One-line contribution Keywords

[27] Coleman
(2008)

’ [...] the previous experience of the person
tasked with managing the development work is
the prime influencer on the process a company
initially uses. Other influencers include the mar-
ket sector in which the company is operating, the
style of management used and the size and scale
of the company operations.’

Software Process, Process
formation, Resources,
Founder, XP, RUP, Agile
Methodologies.

[2] Coleman
(2007)

’Background of Software Development Manager
was central to the initial process that a software
company used.’

Software Process, Software
Process Improvement,
Grounded Theory, Factors
Influencing Process.

[29] Coleman
(2008)

’Our research found that SPI programmes are
implemented reactively and many software man-
agers are reluctant to implement SPI best prac-
tice models because of the associated costs.’

Software Process, Software
Process Improvement,
Grounded Theory, Factors
Influencing Process.

[18] Kajko-
Mattsson
(2008)

By applying their process in a start-up they ob-
tained good results: manage requirements, de-
fine development release, and control releases, im-
prove quality.

Process improvement,
Software Process, Release
Management, Commu-
nication, Maintenance,
Founder, early-stage,
Improve Quality.

[158] Hásel (2010) ’[...] the competence profiles preferred by
founders with innovative products di↵er from
those preferred by founders with less innovative
products.’

Founder Background,
Founder Teams, IT compe-
tence, Team, Know-how.

[94] Hanna (2010) The model presented in this paper o↵ers a pow-
erful tool for understanding the challenges of o↵-
shoring

Outsourcing, O↵shore,
Know-how, Management,
decision-making.

[89] Deakins(2005) ’The dotcom development environment is highly
volatile and requirements can change rapidly
in response to competitor o↵erings and cus-
tomer needs; customers are unreliable predic-
tors of their future needs. Need of multi-skilled
teams, Adaptiveness over e�ciency, Rapid devel-
opment, early-stage, Experimentation, Improve-
ment based on customer’

Innovation, Management,
Software Process, Volatile
environment, Time-to-
market, Adaptiveness,
Rapid Development,Web-
development.

[70] Camel (1994) ’The presence of several other time-to-completion
accelerators appears to be weak in software star-
tups: they did not fully use development method-
ologies, they made little for increasing use of
software tools to increase productivity, weak risk
analysis and project control’

Time-to-market, Pack-
age Software, Founder,
Software Process, Tools.

[79] Silva (2005) ’We have successfully used all of XP practices,
adopted most of them and even came up with
some unique practices of our own.’

XP, Software Process, Agile
methodologies, Practices,
Adaption, Rapid Changes.

[86] Midler (2008) ’While exploitation provides vital short-term re-
sources,exploration enhances the adaptation of
the organization to a changing environment be-
cause it increases the variance of organizational
activities’

Management, Multi-
project, Software Process,
Maturity, Learning, Inter-
net, Founder, Uncertainty.

[84] Taipale (2010) ’Our workflow is predictable within acceptable
variance and we can change direction of the busi-
ness at any given time’

XP, Lean, Agile Method-
ologies, Software Process,
Pivoting.

[34] Chorev (2006) ’Marketing is very important for success and is
underestimated by product startups [...] core
team competences is crucial as well’

Management, Software
Process, Influencing Fac-
tors, Success, Marketing,
early-stage, Team Compe-
tences.

Table A.3 – Continued on next page



www.manaraa.com

Appendix A. Appendix 196

Table A.3 – Continued from previous page

Ref. Author (year) One-line contribution Keywords

[88] Zettel (2001) ’This paper proposes a lightweight software
process for a specific application domain (i.e.,
database-and user-interface-oriented o↵-the-shelf
e-business applications).’

Process Improvement,
XP, Agile Methodologies,
Lightweight process, IT,
Project Management.

[95] Jansen (2008) ’Here, we describe two start-ups that have op-
portunistically and pragmatically developed their
products, reusing functionality from others that
they could never have built independently.’

Reuse, Product-line, Un-
structured, Method, third-
party, Founder, IT, COTS.

[13] Sutton (2000) ’Startups represent a software industry segment
that has been mostly neglected in process stud-
ies, and it is possible that lessons drawn from
start-ups also apply to other develop-ment orga-
nizations.’

Software Process, Pro-
cess formation, early-
stage,Time-to-market,
Resources.

[3] Heitlager
(2007)

’These companies start very ad-hoc, trying to
overcome the uncertainties of market, team and
platform. The biggest struggle for these compa-
nies is to survive with only scarce resources.’ -
This paper provides a matrix to analyze the dy-
namics of the maturity of product development.

Software Process, early-
stage, Innovation, Inter-
net, Process Improvement,
Product Development.

[77] Tingling (2007) ’Small releases, on-site customer, continuous in-
tegration and refactoring were most vigorously
advanced by management and adopted by devel-
opers. Paired programming on the other hand
was culturally avoided.’

Rapid Development, XP,
IT, Software Process,
Internet, Practices, Agile
methodologies.

[80] Deias 2002) ’We are enthusiastic about XP, and it is di�cult
for us to imagine a software project where we
should not try to use XP, at least in the domain
of Internet development.’

Software Process, Ag-
ile Methodologies, XP,
Web Development, Risk
Management, Project
Management, Internet,
Quality Assurance, Busi-
ness, Founder,Customer
relation.

[159] Stanfill (2007) ’To improve the chances of successfully adopting
a new technological innovation and boosting en-
trepreneurial team performance, we propose an
improved way to select suitable technologies, bet-
ter timing for delivering market-driven require-
ments to product designers, and enhanced un-
derstanding of the implications of business and
technical decisions with regards to impact on in-
tellectual property.’

Team Performance, Market
Feasibility, Manage-
ment, Market-driven
Requirements, early-stage,
Founder,Technology-
Driven decisions, IT.

[160] Wood (2005) ’Taken together, these strategies provide guid-
ance to entrepreneurs, board members and busi-
ness and engineering managers of startups for the
e↵ective use of Open Source Software.’

Open Source, Release, Soft-
ware development, early-
stage,Strategy, Internet,
Cost-reduction,License.

[161] Steenhuis
(2008)

’It is therefore unlikely that follower regions or
nations are able to catch-up with the leading re-
gions or nations unless the leading regions or na-
tions enter the high portion of the S-curve, i.e.
their economic growth slows down.’

Innovation, Technological
Development, Critical
Mass,Business,Economic
Growth Internet, Business.

[87] Yogendra
(2002)

’With the role of technology varying from ’en-
abler’ to ’driver’ of the business strategy, busi-
ness and technology strategies need be in close
alignment’

Management, Technology
Driven Decisions, Plan-
ning, Monitoring, Quality.

[76] Ambler (2002) ’I wondered whether the rules of software devel-
opment had also changed. Were we witnessing a
paradigm shift in the way we develop software?’

Agile Methodologies, Web
Development, RUP, Com-
parison, Paradigm-shift.

Table A.3 – Continued on next page



www.manaraa.com

Appendix A. Appendix 197

Table A.3 – Continued from previous page

Ref. Author (year) One-line contribution Keywords

[10] Crowne (2002) ’A model for the evolution of product develop-
ment from startup to maturity is provided, con-
sisting of three phases:phases: Startup ,Stabiliza-
tion , Growth [...] Successful development of new
software products is a key value driver for many
startup companies.’

Software Process, Founder,
Life-Cycle, Internet, Matu-
rity.

[91] Mater (2000) ’Short-time-to market, fast growth, changing re-
quirement are Entrepreneurs dream and Engineer
nightmare’

Management, Busi-
ness,Web Development,
Quality, UX, Time-to-
Market.

[35] Kakati (2003) ’Product uniqueness was shown not to be a signif-
icant factor in determining initial success, despite
the tendency of high-tech firm to emphasize RnD
and technological excellence’

Management, Success Cri-
teria, Risk.

[85] Kuvinka (2011) ’Scrum involves many meetings, much planning
overhead, and time-consuming team collabora-
tion. Is it possible for a single writer to keep
up?’

Management, Internet,
Business, Agile Method-
ologies, early-stage, Scrum,
Kanban.

[162] Su-Chuang
(2007)

’ [...] a properly constructed value proposi-
tion is essential to the value creation process in
e-business, and value is essential to the value
creation process in e-business, and value co-
production is the building blocks for value pro-
tection mechanism in network economy’

Value Proposition, Web
Development, E-Business,
Internet, Business,
Value,Co-production.

[163] Sau-ling Lai
(2010)

’Technology is not Alibaba’s core competency
(non tech-founder) [...] Customer First, employee
next [...] Small is beautiful’

Web Development,
Founder Background,
Know-how, Value Propo-
sition, Finance, Customer
Relation, IT, Internet,
Product Design , Business.

[92] Mirel (2000) ’ [...] usability improvements depend on more
than innovative and user-centered technical de-
signs and implementations. Equally important
for creating useful and usable software are the
social and political forces that shape the devel-
opment context.’

Organizational Factors, Us-
ability, Political Support,
Sociology, IT, Conflicts, In-
ternet, Innovation.

[68] Himola (2003) ’On the basis of the results of this article, it is
suggested that the improvement of product de-
velopment lead time is one of the most important
parameters in the software startup environment
[...] all decisions related to product development
are tradeo↵ situations.’

Time-to-market, Improve-
ment,Business, Manage-
ment, Finance.

[93] Kim (2005) ’Initial trust is regarded as a critical factor for
many e-businesses to succeed in the business-to-
customer e-markets, especially startups, because
it creates initial relationships with customers.’

Trust, Customer Rela-
tion, Initial Trust, b2c,
E-commerce, Internet,
early-stage, Quality.

[96] Wall (2001) ’When money are scarce, OSS can help your busi-
ness launch without breaking your budget’

Open Source, Tool, Java,
Software development, Li-
cense, Distributed Develop-
ment, Cost-reduction.

[81] Yo�e (1999) ’That youthfulness also helps to explain why most
start-ups fail: exuberance can only get you so
far. Jim Clark and Marc Andreessen made a con-
scious choice to scale the company with a di↵er-
ent type of person. They targeted maturity as
well as technical expertise.’

Management, Internet,
Web Development, Team
Formation.

Table A.3 – Continued on next page



www.manaraa.com

Appendix A. Appendix 198

Table A.3 – Continued from previous page

Ref. Author (year) One-line contribution Keywords

[97] Bean (2005) ’Smaller firms like Aperture Technologies Inc. are
using wikis to brainstorm, track projects, write
and edit documentation, and coordinate market-
ing. Software startups like Stata Lab-oratories
Inc. are using wikis to lower teleconferencing
costs for outsourced engineering to India!’

Open Source, Method,
Tool, Internet, Commu-
nication, IT, Knowledge
Management, Manage-
ment.

[33] Tanabian
(2005)

’Because of the small size of the firm, the amount
of uncertainty of its business, and lack of financial
strength, Many practices in place may appear to
be in contradiction with guidelines for a produc-
tive and healthy job.’

Management, Founder, Job
Design, Business, Team
Performance, IT, Features,
Workload, Internet.

[90] Fayad (1997) ’The process should be treated di↵erently from
startups to established companies [...] ’startup
e↵ect’ in which new initiatives get much more
highly qualified and motivated people than stan-
dard projects, and the idea of ’heroic e↵orts’ ’

Software Process, IT,
Process Improvement,
Developers Skill, Re-
sources Scarcity, Internet,
Motivation.

Table A.3: Mapping study - One line content review

A.3.3 Ranking quantification

In this appendix we refer to the process of ranking the selected studies as dis-
cussed in Research Methodology, specifically in Subsection 4.2.7. The final score
has been computed by summing up contributions from eight dimensions: age;
rigor; relevance; venue; pertinence; contribution type; research type; and focus.
For each dimension we defined conversion tables to quantify our criteria, i.e. -
assigning higher scores to recent rigorous journal articles entirely devoted to the
topic and presenting empirical results relevant to practitioners.

The left table (a) shows the scores assigned to each subcategory of the classi-
fication schema, while the table on the right side (b) shows the scores associated
to the remaining dimensions.



www.manaraa.com

Appendix A. Appendix 199

Rigor
Ri Score
3 10
2.5 8.33
2 6.67
1.5 5
1 3.33
.5 1.67
0 0

Relevance
Re Score
4 10
3 7.5
2 5.
1 2.5
0 0

Age
Age Score
[0, 2] 10
[3, 5] 8
[6, 9] 6
[10, 14] 4
[15, 40] 1

Venue
Venue Score
Journal Article 10
Conference Proceeding 7
Magazine Article 6

(a) Other dimensions

Research
Type Score
Evaluation Research 10
Solution Proposal 6
Philosophical Papers 3
Opinion Papers 3
Experience Papers 3

Focus
Type Score
Software development 10
Process management 10
Tools and technology 8
Managerial/organizational 6

Pertinence
Type Score
Full 10
Partial 5
Marginal 3

Contribution
Type Score
Model 10
Theory 10
Framework/Methods 8
Guidelines 6
Lesson learned 6
Advice/Implications 6
Tool 6

(b) Classification schema

Figure A.3: Conversion table for the scoring function

The results of the final ranking of studies is presented in Subsection 5.1.4,
while limitations of this approach are discussed in Subsection 4.2.8.

A.4 Case study details

This appendix presents the interview package2 used during the case study, divid-
ing the description according to the research design process, defined in Subsection
4.3.2. Moreover we present all the collected raw codes and categories as described
in Subsection 4.3.4. Finally we present the engineering elements identified by
practitioners in support of the categories defined in the theoretical model (see
Chapter 6).

A.4.1 Interview package content

In this subsection we briefly present the content of the interview package. As
previously discussed in Subsection 4.3.2, the interview package has been incre-
mentally improved and structured to represent the output of all the activities

2Published at: https://github.com/adv0r/BTH-Interview-Package.

https://github.com/adv0r/BTH-Interview-Package


www.manaraa.com

Appendix A. Appendix 200

involved in the interview design process. The package, which contains a set of
artifacts (38) clustered in 9 directories, is available for download on Github [146]
under MIT licence3. The directories accompanied by their identifier are listed
below:

• TMPL - Templates.
• SUP - Support material.
• TC - Topic cards.
• CLIST - Check lists.
• HLIST - Hand lists.
• TOOL - Tools.
• FUP - Follow-up.
• RC - Recordings.
• TAN - Data Triangulation.

First of all we created general templates to conduct and record information of
the sampled companies, shown in Table A.4.

ID File Name Description

TMPL.0 Companies Overview Startups’ information related to: name, category, website and brief
description of their main product or service.

TMPL.1 Cold Call Script Dynamic Script with verbatims and reaction, to use during phone
calls with companies.

TMPL.2 Ack Mail Request for interview template email for informing candidate star-
tups about our research and our interest.

TMPL.3 Thanks Mail Mail to send to startups immediately after the interview.

TMPL.4 Reward Mail Mail to endorse rewarding to startups after they filled the follow
up questionnaire.

TMPL.5 Web call-for-interview Web-page to inform about the interview and allow spontaneous
participation.

Table A.4: Interview Package - Templates

The support materials aim to help researchers in executing the interviews,
providing tools to control the process and structure the interview conduction (see
Table A.5).

3MIT license is a free software license (information available http://opensource.org/

licenses/MIT).

http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT


www.manaraa.com

Appendix A. Appendix 201

ID File Name Description

SUP.0 Package Content List of all available documents to conduct the interview.

SUP.1 Whiteboard Wireframe Wireframe of the interviews workflow with a graphical representa-
tion that can be followed on a whiteboard.

SUP.2 Definition Vocabulary List of definition of engineering terms used during the interview,
constantly updated to ensure consistency.

SUP.3 Company Info Condensed summary of information about a startup to prepare
before the interview containing: respondent and company data;
developed product features and qualities.

SUP.4 Package Usage Model representing the usage timeline of each artifact present in
the interview package.

Table A.5: Interview Package - Support Material

Table A.6 lists all the topic cards we used during the interview. These arti-
facts represent the actual script which has been followed in the execution of the
interviews.

ID File Name Description
TC.0 Kick-o↵ Card Verbatim to start the interview session introducing the interview-

ers, clarifying the execution details and a little disclaimer.
TC.1 Opening Questions

Card
Script describing the first questions to ask for making the intervie-
wee comfortable.

TC.2 Feature Elicitation
Card

Questions to quickly elicitate the main features of the companies
product.

TC.3 Non Functional Card Questions to elicitate the main quality aspects considered during
the development process.

TC.4 Process Card Script to elicitate if standard processes and methodologies has been
considered during development and to keep track of topic covered
during the interview.

TC.5 Requirements Card Script to elicitate main methods, tools and measures used during
requirements specifications.

TC.6 Analysis Card Script to elicitate main methods, tools and measures used during
analysis of critical parts of the project and feasibility assessment.

TC.7 Design Card Questions about the high-level architecture decision and low level
design choices made during the development process.

TC.8 Implementation Card Questions to elicitate the implementation methods, tools and mea-
sures.

TC.9 Testing Card Questions to elicitate the methods, tools and measures for validat-
ing and verifying the developed product.

TC.10 Deployment Card Questions to elicitate methods, tools and measures during the de-
ployment of the product.

TC.11 Cool-down Card Script for thanking the respondent for his participation and recall-
ing to answer the follow-up questionnaire.

Table A.6: Interview Package - Topic Cards

In order to have control over the engineering elements we created a checklist
of well known practices, tools and methodologies which, the company might have
used (see Table A.7).



www.manaraa.com

Appendix A. Appendix 202

ID File Name Description

CLIST.0 Practices List List of best practices in software engineering.

CLIST.1 Tools List List of the most used tools by practitioners.

CLIST.2 Methodologies List List of the most recent software development methodologies de-
scribed in software engineering.

Table A.7: Interview Package - Check List

Moreover we packed lists to provide to practitioners possible engineering ele-
ments they might have used but that were not mentioned during the interviews
(see Table A.8).

ID File Name Description

HLIST.0 Qualities List List of qualities attributes as listed in ISO 9126.

HLIST.1 SE Artifacts List List of well-known engineering artifacts most used from software
engineers.

Table A.8: Interview Package - Hand List

We created a tool for managing the interview conduction (Slider.app), and
we made use of Prezi to visualize the workflow of the entire interview (see Table
A.9).

ID File Name Description

TOOL.0 Slider.app Web-application for conducting the follow-up questionnaire online
and collecting data.

TOOL.1 Prezi.com Web-tool for conducting the interview remotely and visualizing the
workflow and lists.

Table A.9: Interview Package - Tools

Table A.10 presents the artifact which were used to capture results using an
online questionnaire.

ID File Name Description

FUP.0 Questionnaire Follow-up questionnaire with both free text form and likert scale
question to rate items mentioned during the interview.

FUP.1 Result Summary Short report of results obtained from the interview.

FUP.2 Repertory Grids Grid of methods and engineering artifacts retrieved from the inter-
view as elements for scaling..

Table A.10: Interview Package - Follow-up

Table A.11 shows the structure of all the recordings that were stored during
the interviews.



www.manaraa.com

Appendix A. Appendix 203

ID File Name Description

RC.0 Audio Audio records of the interview.

RC.1 Notes Written notes obtained during the interview

RC.2 Whiteboard Workflow of main topics (product, quality, process) discussed dur-
ing the interview.

RC.3 Others Other obtained records not mentioned before.

Table A.11: Interview Package - Recordings

In some circumstances we were able to triangulate data with provided artifacts
after the interviews (see Table A.12).

ID File Name Description

TAN.0 Provided Artifacts Artifacts discussed during the interview, then delivered by the star-
tups to the interviewers.

Table A.12: Interview Package - Triangulation

The use and advantages of such triangulation are described in Subsection
4.3.3.

We encourage anyone who has interests in pushing this work forward, to fork
the repository and contribute to it. If used in a research context, please inform
us, in order to be able to track where and how the interview package has been
used.

A.4.2 Interview questions

During the interview design process we prepared scripts to use as guidelines in
conducting the interviews. We embedded them in the previously described inter-
view package, and in Table A.13we present the list of questions grouped by topic
card.

1. Opening questions
ID Question
Q.0.0 When was (company name) founded?
Q.0.1 How was the initial team composed? And now?
Q.0.2 What was your role initially?
Q.0.3 How long did it take to release (product-name) to the public the first version* of your

product?
2. Features elicitation

ID Question
Q.1.0 Is (product-name) (company name) first product? (yes/no)
Q.1.1 Does (product-name) still represent good part of your current core business? (yes/no)
Q.1.2 Can you briefly describe it? What does it do?
Q.1.3 Could you help me to write a list of the main features of this product, briefly, on this

whiteboard? Let’s try to write essential functionalities (around 3-5) of your system.
3. Non-functional attribute

ID Question
Q.2.0 You have a (product-type) in place ... I guess that in this case, is important to (some-

important-non-functional-aspect) . Am I right?
Q.2.1 Why was this important/unimportant?
Q.2.2 How did you realize it? (ask for each quality he mention as important)

Table A.13 – Continued on next page



www.manaraa.com

Appendix A. Appendix 204

Table A.13 – Continued from previous page

4. Process
ID Question
Q.3.1 Did you use any specific development methodology?
Q.3.2 Did you use any project management process? How do you schedule the progress of your

project?
Q.3.2 If any,who was the manager? (critical decsion)
Q.3.3 What were your tipical working hours?
Q.3.4 Did you had any pressure for deliverying the product fast?

5. Requirements engineering
ID Question
Q.4.1 Where does the idea behind (product name) come from?
Q.4.3 Did you discuss the idea with other founders/team-members? Any other stakeholders in-

volved in the discussion? Did you document it?
Q.4.3 Have you formilized the behaviour/requirements you wanted to implement in the first re-

lease? How?
Q.4.4 Did you structure/organize the requirements?
Q.4.5 What happened when requirements were changed, added or deleted? How did you manage

them? Any tools?
Q.4.6 Did you trace functionalities/requirements during subsequent activities?

6. Analysis
ID Question
Q.5.0 Did you analyzed what were the main challenges of the project from the development per-

spective and how to mitigate them? Did you document it?
Q.5.1 Did you consider the skills and time needed for realizing the project? Did you document it?
Q.5.2 Have you applied any measure to assess feasibility? And potential risks? ”What if” analysis?
Q.5.3 Any particular considerations for critical requirements?

7. Design
ID Question
Q.6.0 Have you considered any design architecture before start implementing the actual code? If

no: have you structured your system in di↵erent parts? How do they interact?
Q.6.1 Have you created models or diagrams for documenting those decisions?
Q.6.2 Have you considered measuring your architectural decisions? Such as maintanability e↵ort

required to change a component of your system.
Q.6.3 Have you considered well-know standards to adopt (such as design or architectural patterns)?

Did you document them?
Q.6.4 Have you utilized any particular tools for designing your system?

8. Implementation
ID Question
Q.7.0 How did you approach coding the first days? You had the idea, you had the requirements

and the design... and then?
Q.7.1 Have you considered any workflow guidelines before or during the coding phase?
Q.7.2 How did you divide the work between team-members?
Q.7.3 How did you manage the code base?
Q.7.4 What documentation have you produced during coding?
Q.7.5 Have you considered any configuration process for the development environment? Did you

document it?
Q.7.6 How did you manage issues and bugs?
Q.7.7 Did you monitor aspects of your development such as team productivity, size/complexity ...

?
Q.7.8 Which are the tools that most have helped you producing code?
Q.7.9 What programming language did you use?

9. Testing
ID Question
Q.8.0 Did you perform any kind of tests for the implemented code? Such as acceptance, unit,

integration and system tests?
Q.8.1 When did you write the tests? Are they documented?
Q.8.2 Quality assurance was an important concern? (to deduct also from the discussed qualities)
Q.8.3 Have you conducted any verification and validation process? Did anyone tried your product

before the first release? Any reports and analysis of results?
Q.8.4 Have you conducted any measurement for assessing the validation and verification results?
Q.8.5 Have you utilized any specific tools for performing testing?

10. Deployment
Table A.13 – Continued on next page



www.manaraa.com

Appendix A. Appendix 205

Table A.13 – Continued from previous page

ID Question
Q.9.0 How did you deploy your project? Are you about scalability?
Q.9.1 Have you utilized any specific tools?

11. Closing questions
ID Question
Q.10.0 Have you considered improving the development process (in terms of e�ciency and e↵ective-

ness)?
Q.10.1 Have you experienced a drop-down performance during the development, if any? What could

be the reason and when did it happen?
Q.10.2 What is the most valuable improvements you would apply with perfect hindsight?

Table A.13: Grounded Theory - Interviews guiding questions

A.4.3 Interviews - Open coding

In this section we present all the codes conceptualized during the open coding
process4 (the process is described in Subsection 4.3.4 and results presented in
Subsection 5.2.2). The following tables shows the 630 which contributed in the
formation of the theoretical model, divided by thematic area.

Code stats - Opening Questions

Code

Small team
Recently Founded
Technical Respondent
Technical Founders
Short Product Building Time
Web and Mobile Product
Web Application
Tech/Biz Founders
Very short product building time
Web and desktop

Table A.14: Opening questions

Code stats - Product Priorities

Code
Growing Team
Minimum and essential set of functionalities is important
Limited budget
Automatization of deployment
Tradeo↵: Quality and Time-to-Market
UX
Assess usability with user feedbacks is important
Development speed is the most important

Table A.15 – Continued on next page

4During the process we used tags such as SUGG and ERR to di↵erentiate the conceptual-
ization between what was the current state-of-art and gathered hindsight suggestions for the
future or mistakes occurred in the past.



www.manaraa.com

Appendix A. Appendix 206

Table A.15 – Continued from previous page

Code
Time pressure
Entrepreneurial attitude
Interoperability
Not paying attention to non-functional aspects makes development faster
Value to the user is the most important
Being fast to learn what brings value to user
Delay choices which could limit technological flexibility
Delicate balance between code maintainability and development speed
Desire to roll out something new as fast as possible
Ease of use
ERR: Not using a framework to avoid learning, consequences with low maintainability
Framework to Improve Maintainability
Metrics for assess Usability
Quality was not a priority in early stage
Short Time-to-Market is the main focus
SUG Build scalable product/infrastructure from data 1
SUG Technology is not enough
Usability
Usability more important than functionalities
Build scalable product/infrastructure from day 1
Compliance with third party components
Ease of use (Product usage without interruption) is important
ERR: Not considering UX from day 1 led to unsatisfied initial users
ERR Technical issues for scalability
Idea conception from personal problem
Internal Deadlines
Lack of scalability
Lack of usability expertise
Mobile application compliance with Apple standard is important
Performance
Pivoting from initial prototype
Poor performance drive users away from the product
Portability from web to mobile
Portability in mind from day 1
Proof of concept by prototype
Prototyping for assessing e�ciency
Prototyping for assessing usability
Reliability important for infrastructural product
Ruby on Rails increase Maintainability
Scalability realized soon based on past experience
SUG Enhance scalability
Talk with customers
Tradeo↵: E↵ectiveness more important than UX
Tradeo↵: High portability and UX for Mobile Apps
Tradeo↵: Quality vs. Budget
Tradeo↵: Usability functionality
Analysis for communication of di↵erent technologies
Attend startup events to prove idea/concept/prototype validity
Close friends feedbacks for increasing usability
Cultural usability expectation
Customer giving spontaneous feedback
Dedicated person for UX portability to Android
E�ciency
E�ciency to enhance UX
E�ciency will emerge only when using a prototype
Find a mentor in early stage
First prototype to solve personal problem
Focus group to assess usability (with potential users)
Hire more people
Interoperability studies beforehand (with third parties)
Lack of people
Lack of reliance on third party services

Table A.15 – Continued on next page



www.manaraa.com

Appendix A. Appendix 207

Table A.15 – Continued from previous page

Code
Limited hw resources
Maintainability becomes important when complexity and size increases
Maintainability enhance testability
Medium Product Building Time
Minimum level of maintainability (decent) from day 1
Mobile application portability covered mainly with iOs and Android
Mobile MVP hard to get accepted on Apple Store
Mobile portability deals with di↵erent OS
Mobile portability is important
Mobile/web portability first version using HTML5 to save time
Not perfect usability is not critical
people are usually more attracted by interfaces
Portability of Web application is Browser Compliance
Product changes quickly
Product is not security-critical
Reliability becomes a problem when users increase
Reliability for web-consumer product is not important
Reliability in early stage is not important
Remote team (non co-located)
Scalability issues solved using Elastic Infrastructures (EC2)
Scalability vs UX
Social network integration boost usability
Sometime startup fail because over-engineer the product before launching
Starting as side project cause low attention to maintainability
Studying competitors to di↵erentiate
SUG: Maintainability from day 1 is easier than huge in late stage
SUG: Scrum helps in clarify product vision
SUG: Scrum helps in visualize project progress with the team
SUG Solid product infrastructure increases confidence in the product
SUG system oriented infrastructure instead of monolithic app
SUG working prototype is essential for fund raising
Technical background hinder usability
Tradeo↵: Mobile native apps takes longer but more E↵ective (UX, E�ciency)
Tradeo↵: Working overtime ! quality code
Tradeo↵: Development speed vs Reliability
Two respondents together
Usability assessment cannot be based only on feedback (users do not realize some design detail)
Usability at first designed with personal experience
Usability essential for games
Usability important when founders background is design
Usability improved by studying cutting-edge examples
Usability outsourcing
Users intensively using a system needs a high UX
UX background
Working overtime decreases productivity in long run
You have to find the balance between UX and functionality
Lack of scalability because of budget
Lack of scalability because of people
SUG working product is essential for fund raising

Table A.15: Product priorities

Code stats - General Process

Code
Respondents claim to use light version of scrum partial principles implemented
Communication facilitated by small team size and co-location
Hacker culture
Started from pre-developed technology / prototype
Automatization of deployment

Table A.16 – Continued on next page



www.manaraa.com

Appendix A. Appendix 208

Table A.16 – Continued from previous page

Code
Collaborative online tools for task management
Co-located Team
Critical decision taken by the CEO/CTO which have global overview of the project
Developers usually work overtime to meet goals
Development speed is the most important
Fast and Informal Development approach
Short and flexible iterations (. 2 weeks)
Time pressures from investors
Agile methodologies are not e↵ective with one/two person teams
Developers are self-organized in choosing tasks
Entrepreneurial attitude
Evolutionary MVP approach helps bring value to customers
Feedback from users is a priority since day 1
Growing team requires more control / management on initial chaos””
Having a deadline for final releasing is necessary to set a limit to improvements
Idea originated from hole in the market
MVP evolutionary approach to (software) development
New features idea proposed by CEO
Reduce wasting time on specifications and analysis and focus on code
Simple products doesn’t require formal process
Virtual kanban board style to manage the user stories
Being fast to learn what brings value to user
Delay choices which could limit technological flexibility
Desire to roll out something new as fast as possible
Feedbacks collected via email
File sharing between team-members using online tools
Founder background as scrum-muster drove his attitude towards software development
Informal internal deadlines
Post-its for task management
Small milestones (. 2 weeks) help developers’ awareness of project progress.
SUG: Limit planning because plans will be subject to changes, no matter what
SUG Technology is not enough
Build scalable product/infrastructure from day 1
Co-located working environment does not require tools for know who was doing what
Collaborative online tools for project management
Developers satisfaction is influenced by how the sprint goal is achieved/not achieved
Development team priorities in contrast with company operations
Discussing ideas informally
ERR: Low experience with project management -¿ No schedule
ERR: A key developer acting as manager is much less e↵ective
Flat organizational structure
Focusing on one task at the time improve productivity
Github for managing the code base
Idea conception from personal problem
Implemented some principle of Lean Startup
Internal communication tools, simple chat, are very important for communication
Internal Deadlines
Knowledge sharing with online dedicated tools
No process
Not able to keep documentation updated during the process (lack of time)
Pivoting from initial prototype
Plan with a rough spreadsheet is su�cient
Post-it
Project management (tools) become necessary with growing team and product complexity
Project management is not needed because of co-located work env
Stand-up meetings are simple and worthwhile
Stand-up meetings to discuss task assignment of the day
SUG: for non-collocated teams more prescriptive guidelines needed (process)
SUG: Outsourcing in Low-wages countries helps saving budget
SUG: Scrum can work in the context of startups given that one person has done it before
SUG: Too many tools negatively a↵ect speed
Talk with customers

Table A.16 – Continued on next page



www.manaraa.com

Appendix A. Appendix 209

Table A.16 – Continued from previous page

Code
Team progress was not measured
Time pressure from media coverage (hype)
Uncertainty
Very short time between idea discussion and feature implementation
Whiteboard for task management
Whiteboard to monitor project progress
A team which worked together in the past develops ad-hoc approaches
Agile helped receiving quickly user feedback
Agile Practices such as TDD and PP can cause overhead
Analysis for communication of di↵erent technologies
Attend startup events to prove idea/concept/prototype validity
Automated source control tools when team grows
Avoid formalities to release faster
Back-end skills is important for developers in startups
Build fast (asap) without schedule
Comfortable environment negatively a↵ect productivity
Community manager is a very important figure to manage large number of users
Cross functional teams (full stack developers - front-end backend - mobile and web)
Customer Development helped in identifying the market niche
Customer dictated usage scenarios,and developers team extract functionalities
Customer giving spontaneous feedback
Developer responsible for designing, coding and testing a feature
Didn’t executed radical pivot of main features
E-mails for communication on distance
ERR: Bug fixing process not integrated in Scrum
ERR: Lack of documentation can lead to poor understanding of the system
ERR: Little or no software development experience
ERR: Losing precious time engineering the product without releasing early
ERR: Scrum without expedite-lane for dealing with emergencies was problematic
ERR: When all developers can modify the kanban wall (add move remove) confusion arises
Feature Meeting when necessary to discuss new features
Final integration (one-time) when single parts completed
Find a mentor in early stage
First prototype to solve personal problem
Good impression on first reference
Graphical design tool
Growing team led to necessity of more meetings
Growing team require tasks assignment
Having a user manual is important
Highly experienced developers
Highly experienced developers made the process faster
Hire more people
Idea started as a side project
Impediment board helps in solving bottlenecks
In the first stage of a startup team productivity is not essential (other priorities)
Informal Meetings
Instagram founders were working.
Introducing a process decreases productivity
Iteratively adjust product tracking metrics
Measure conversion rate of landing page (desktop application)
Meeting for discussing new feature ideas
Show-and-tell to informally share weekly achievements are very useful to boost motivation
Mobile MVP hard to get accepted on Apple Store
No formal schedule
No pressure (time, budget, investors)
No Project management tool
Overhead of request hard to handle after successful launch
Overhead of request hard to handle when tired
Pair-programming helps with new hires
Pivoting from b2b to b2c
Process is not necessary until you start collecting real users feedback
Process perceived as limitation to speed

Table A.16 – Continued on next page



www.manaraa.com

Appendix A. Appendix 210

Table A.16 – Continued from previous page

Code
Product backlog for monitoring project progress
Product changes quickly
Proximity to release brought fear for credibility which led to more formalities
Release step-by-step to an increasing number of friends/user before open the product
Rigid Macro-Milestones, flexible internal smaller milestones
Rigid Weekly Sprints (Scrum) when pressure higher
Scrum works better with skilled and experienced people
Scrumboard (simplified) with only a few boards
Simple products does not require project management tools
Solo developer
Sometime startup fail because over-engineer the product before launching
Source of pressure because they were using the product for their work
Starting as side project cause low attention to maintainability
Stories / Features did not need any prioritization (all necessaries)
Studying competitors to di↵erentiate
SUG: A mentor in the early stage is really useful
SUG: Be flexible in apply only useful Agile practices
SUG: Make some beforehand analysis to define data structure
SUG: Scrum brings advantages: team-building, responsibilities, better code quality
SUG: Scrum practices for software development, together with Lean Startup methodology
SUG: Shorten iteration coding time (from 5d to 3d) dedicate 2 days / week bug fixing
SUG: Small engineering teams (3 persons) are quick, adaptive and responsive
SUG: The only possible approach for startups is using Lean Startup Methodology
SUG: Use a physical kanban wall when co-located
SUG: Use kanban wall to track team velocity
SUG: Working overtime on the code, makes poor code quality
SUG For non-co-located teams more documentation is needed
SUG Solid product infrastructure increases confidence in the product
SUG system oriented infrastructure instead of monolithic app
SUG working prototype is essential for fund raising
SUG: many small customers bring more value than a single big company
SUG: Setting deadlines increase productivity
Team with no or small working history
Technical founders are aware of development team necessities more than non-technical managers
User documentation
Users feedback not necessary for the simple and specific application type (well-defined)
Workflow driven by user feedbacks, new ideas and necessities without scheduling
Working overtime only in the first phase
Young Employees

Table A.16: General Process Codes

Code stats - Requirement Engineering

Code
Dissemination of the idea with informal discussion and support of tools (whiteboard, paper, views)
Automated tools for collecting TODO lists, Requirements,User Stories
Started from pre-developed technology / prototype
Critical decision taken by the CEO/CTO which have global overview of the project
Estimations based on developer experience
Manual tools (whiteboard / paper) for collecting stories
Feedback from uservoice
Idea originated from hole in the market
New features idea proposed by CEO
Stories/features prioritization using personal experience and user feedback
Work break-down in smaller stories to let developers work independently
Idea refinement through networking
Lack of Requirement Specification Documentation
Trello
Automated tools for managing stories/features are necessary when complexity grows

Table A.17 – Continued on next page



www.manaraa.com

Appendix A. Appendix 211

Table A.17 – Continued from previous page

Code
Developers can manage user stories independently (create and assign)
Prototype (rough) to explain features and share vision among team members
Specification written from user perspective (stories)
Stories / List updated throughout the process via automated tools
Stories/features traceability via version control
Whiteboard not updated throughout the process (lack of time)
A prototype can substitute stories / feature documentation
Ability to write detailed specification from day one, thanks to prev. experience
i’ve never seen a document...
Clarify product vision through important use cases only
Co-working space limit whiteboard utility
Cross divide technology (HTML5) helped building faster prototype
Customer dictated usage scenarios,and developers team extract functionalities
Dissemination of the idea with informal discussion via email
ERR: Don’t ask early customer feedback
Features / stories collected in an informal magazine (the startup product itself)
Feedback from prototype to drive user stories / features
Idea coming from prev. founder working experience (hole in market)
Idea refinement through focus group
Idea started from authority request for application open
Lack of trust in customer’s feedback (next)
New features idea through focus group
New stories collected and prioritized during weekly meeting discussion
One developer assigned to one task at the time (generally)
Paper prototype (wireframes) to demonstrate the views
Physical wall for task / todo / user stories
Product based on a Contract with public authority (Requirements fixed)
Product support three family of users
Scrum board to manage stories (physical) with post-it notes
Simple semi-automated todo list software (google spreadsheet) to collect stories/features/feedback
Started with more structure and process that increasingly degenerated in chaos/spaghetti
Stories / feature traceability using skype logs
Stories / featured prioritization with 3 simple labels (urgent, todo,ideas) was enough
Stories / Features did not need any prioritization (all necessaries)
Stories / Lists used initially and not really updated
Stories/feature prioritization on a whiteboard is much better than Electronic tools
Stories/Feature prioritization with the help of tools (categorize etc)
Stories/features captured with top-down approach
Stories/features prioritization analyzing which were useless to pursue the vision
Stories/features prioritization documented side to side with business plan
Stories/features prioritization through informal discussion
SUG: Use Customer Development approach to collect user feedback before implementation
Team formation during events (startup weekend)
User feedback to choose among di↵erent UI
User views mockups represented the feature list (product as a flow)
Video on Landing page to explain features to users and share vision among teams
Visualize feature idea through mind-mapping tools
Whiteboard to clarify product vision is excellent

Table A.17: Requirement Engineering Codes

Code stats - Analysis

Code
Analysis not important, partially replaced by informal discussions
Analysis of feasibility not important because past experience/knowledge with similar domains
For non-core functionalities user feedback outperforms a formal analysis
Simple product does not require analysis for expert developers
Small informal analysis to make important technological decisions
Competitor informal analysis to investigate improvements to tackle

Table A.18 – Continued on next page



www.manaraa.com

Appendix A. Appendix 212

Table A.18 – Continued from previous page

Code
Using well-known, traditional, tested technologies foster team performance
Analysis does not work with innovative products never done before
Analysis of interoperability with critical third party components
Analysis replaced by experimenting critical technologies before implementation
Analysis replaced by exploring solutions within developers community (ruby gems)
Analyzing competitor feedback to understand what to improve
Create a document to show customers the di↵erence from competitors
Decisions taken with recorded brainstorming for traceability
Disruptive technology
Evaluated and documented pros and cons of decisions made
Evolutionary Prototyping substitute analysis for innovative product
Facebook is still using mysql...
Specifying the product features precisely beforehand makes development cycle shorter
Let users evaluate between di↵erent front-end functionalities alternatives
Third party newsletter for external third party APIs updates
Transposed feature list to use cases (Analysis)
Underlying technology (third party) changing quickly (Interoperability) do not allow Analysis
User feedback to decide application name
Using well-known, traditional, tested technologies makes hiring developers easier

Table A.18: Analysis Codes

Code stats - Design

Code
Hacker culture
Well known architectural framework for web application (MVC)
Document communication among components (high-level)
Maintainability through de-coupled modules (modularization)
Design of the architecture conducted through informal and poorly documented discussions
Design of the architecture not documented at all (based on personal experience)
Designed the data-structure
Framework reduce the need of documentation (well-known and structured)
General high level mock-ups of views was the only documented design
Tradeo↵: Engineering the product/process vs. Flexibility in first phases
Delay choices which could limit technological flexibility
There is no time to keep documentation updated out-of-the-code
Clear and standard code minimise the need of a design documentation
ERR: Not having an initial design led to problems in later phases
Initially defined modules and communication to enhance e�ciency
Not able to keep documentation updated during the process (lack of time)
Simple product do not require formal design (replaced by naive diagrams)
Technical debt
UML complex diagram replaced by naive diagrams
With extremely small teams architectural choices do not need to be documented
Academic background led to more formal design diagrams
Automated tool for managing the product architecture (MVC)
Automatic tools for documentation
Co-location and the high communication volume makes design documentation un-necessary
Design informally made using whiteboard between engineers helps a lot
Electronic tools for UI design
ERR: Academic background led to standard formal UML-like diagrams useless for early stage startup
ERR: Lack of initial analysis/design of data structure led to overhead later on to fix problems
ERR: Small mistake in initial data structuring led to bad consequences
ERR: Traceability of decision taken was a problem
Growing team lead to necessity of refactoring
Growing team lead to waste and trash code (ERR)
Lack of documentation can sustain a growing team at 1-2 employee at the time through training
Pair programming helps in the first phase when structuring the application
Reflect the code structure in the UI using di↵erent colors for di↵erent user-category

Table A.19 – Continued on next page



www.manaraa.com

Appendix A. Appendix 213

Table A.19 – Continued from previous page

Code
Simple product do not require architectural design (replaced with evolutionary prototyping)
Specification for critical communication between components
Structure the code-base di↵erentiating by user group
SUG: Document at least communication among components
SUG: The fastest MVP prototype is a piece of paper with the view in front of real users
SUG: When working remotely, even with past experienced teams, documentation is important
SUG: Remote teams, design only the final definitive mock-up, to save communication time
SUG: When working with remote teams design documentation is important
SUG: Wireframes will not reflect the actual outcome (limited utility)
SUG: not sure about choice of framework
Tradeo↵: Time pressure leads to lack of documentation
Tradeo↵: Trash code when growing instead of Write quick code in the beginning
Using ready open source components for UI elements made development faster
With evolutionary prototyping there is no design phase (in the waterfall sense)

Table A.19: Design/Architecture Codes

Code stats - Implementation

Code
Collaborative online tools for task management
Productivity metrics are ignored
Chat tools for internal communication and traceability
Clear code does not need in-text comments
Comments inside the code when necessary
Critical decision taken by the CEO/CTO which have global overview of the project
Estimations based on developer experience
Git / GitHub as version control system for the code-base
Github for issue / bug management
Developers are self-organized in choosing tasks
Framework reduce the need of documentation (well-known and structured)
Growing team requires more code documentation
Project management tool for issue / bug management
Task are assigned by CEO/CTO on personal experience
Virtual kanban board style to manage the user stories
Work break-down in smaller stories to let developers work independently
Extremely small development team did not require Version Control System
Git for branching/merging useful for the codebase
Refactoring the code only when stricly necessary
SUG: Treat issues/bug and user stories/new features equally (same board)
Trello
Well-known framework for the product (RoR)
Code metrics ignored (complexity, size, etc ...)
Documentation perceived as a waste
Framework (RoR) easy to learn and with big advantages
Growing team requires use of Version Control System
Hero developer helped in meet deadlines
IDE
Lack of experience caused some re-work
Need of documenting the code is bad code smell
No workflow / guidelines for implementation
Php
Refactor as-you-go
Team productivity measured naively looking at closed tickets
Versioning system not necessary when no-overlapping between developers’ concern
Begin implementation with internal APIs
C++ (desktop application)
Chose technologies familiar to developers (language and framework)
Code documentation only for long-lasting pieces of code
Code n fix.

Table A.20 – Continued on next page



www.manaraa.com

Appendix A. Appendix 214

Table A.20 – Continued from previous page

Code
Code standards
Developers can decide which bug to work on
Critical bugs fixed immediately (no need of issue tracking system)
CSS3
developed locally, tested locally
Developer environment consistent with production environment
Documentation not necessary with clean code Documentation, even in-code, is waste
ERR: Time wasted for not analysing existing technical solutions (libraries)
Github useful for code-reviews
Github useful to see who is doing what
Growing teams require to trace who is doing what
HTML5
Internal APIs to improve portability
Jira used for issue / bug management
Mercurial for version control system
Minimal set of tools for code implementation (electronic board + chat + version control)
New hires training encourage developers to refactor the code
No need of task system (no even manual) thanks to hero developer
Node.js
Non relational database
Pair programming help communication between developers
Paper for issue / bug management
Process perceived as killer for creativity
RoR helps in managing code
RoR for scalability
SUG: Chose the technology according to the nationality of developer you want to hire
SUG: Github useful to see who is doing what (growing team)
SUG: Given good experience TDD is best way of writing software
SUG: Trello for issue management (and task) is e�cient
SUG: Version control system automatic tools are well integrated and do not cause overhead
SUG: When working with remote teams, let one person decide tasks assignments
Tickets (stories) not useful in the very early stage (one big story implement the product”)”
Track for bugs in the beginning, then stopped.
Version control system using project management tool integration

Table A.20: Implementation Codes

Code stats - Verification and Validation

Code
Absence of automatic testing (replaced by experience and usage)
In house validation by trying the product
Test only critical parts is enough, Secondary bug found by users
Progressively have the product used and tested by increasing number of persons refining it
Feedback from uservoice After releasing a new feature let a trustworthy set of superusers try it and
report bugs works very good
Feedbacks collected via email
For non-core functionalities user feedback outperforms a formal analysis
In house validation for core features identifies critical malfunctioning before releasing it
Automatic tools to asses product usage help adjust flaws
Contacting users personally to identify malfunctioning
If code is well tested, documentation can be replaced by test cases
In web applications bug are usually client side, hard to automatically detect
Landing page helps you having feedbacks before releasing the actual product
New features manually tested every week before the weekly roll-out
Release the product to let the users report bugs
RoR test suite framework are well defined
TDD requires a paradigm shift that is easier for newer generation of developers
Testing absent because lack of knowledge
Testing almost non existing so that process can be faster

Table A.21 – Continued on next page



www.manaraa.com

Appendix A. Appendix 215

Table A.21 – Continued from previous page

Code
Tradeo↵: Amount of tests (slow down the process) and reliability (user are fault tolerant)
Tradeo↵: Testing require hiring VS. Small teams are more flexible
Tradeo↵: Time-to-market more important than testing
Unit testing only when strictly necessary
Agile Practices such as TDD and PP can cause overhead
Continuous Integration testing using automated tool (selenium)
Developer responsible for testing his own code makes process faster
Development team were using the product itself for their development process
Didn’t found bug in production: Lucky
Email used for bug reports
ERR: Not testing UX with real users
ERR: in the prev. project we did UX ourselves
For iOs/mobile product Apple o↵er automatic testing
Framework facilitate testing
Growing (remote) team require a tester
Growing team requires increasing number of tests
Growing teams are facilitated by having TDD already in place
Include a on/o↵ switch in new features to de-activate it if something goes wrong
Inspect logs to find bugs
Integration testing executed manually sometimes
Landing page used for idea validation
Maintainability enhance testability
Scalability through testing over databases
Self explanatory tests don’t need test cases (cocumber)
Simple projects does not require much testing
SUG: Customer service dedicated to collect feedback is very important
SUG: Developers are Testers and should test someone else’s code
SUG: Given good experience TDD is best way of writing software
SUG: User stories itself suggest acceptance tests
TDD, not religious but only on critical parts, helps a lot
TDD helps keeping the focus on the current task
TDD requires experience
Test to assess performance/e�ciency
Testing helps innovation by improving confidence in the code (not being afraid of breaking stu↵)
Testing necessary when the product become more complex they still do not have testing)
The interviewee not expert in automatic testing techniques
User retention is the most significant metrics to understand how the product is working in the market
We test mainly the most used features

Table A.21: Verification and Validation Codes

Code stats - Deployment

Code
Deploy on third party infrastructure (cloud)
Deployed on Virtual Private Server (VPS)
Automatic tools for staging and deployment
Direct deploy from development machines to production
SUG: Use simple automatic tools (Chef) for managing staging and production
Deploy new features using Git merging feature branches with master
Manual deploy from development machines to staging and then production
Weekly scheduled deploy
Deploy with the help of automatic tools
Extremely frequent new deployments
Heroku speed up the process avoiding infrastructural complexity
SUG: Increasing number of users require a staging environment before deploy in production
we deploy from 5 to 20 times per day

Table A.22: Deployment Codes



www.manaraa.com

Appendix A. Appendix 216

Code stats - Closing Questions

Code
Enthusiasm and motivation keep productivity high
Growing team requires more control / management on initial chaos
Working history between developer facilitated execution
ERR: Create a complex and big project for long time without evaluation
Growing team makes high volume of informal communication is a problem
SUG: Project management tools, if well integrated, boost productivity
Time pressure (Beating competitors)
Find product/market fit is a priority
Product/market fit
Productivity drop-down when growing team
Company is now mature and moving towards process and structure
Customers likes small improvements (not-expected small features)
Developers fear notify ticket status (feel monitored)
Developers in startups have big responsibilities
ERR: Not estimating because lack of experience
Even in the early stage at least two developers are required
Frameworks help growing faster
Front-end developers are over-rated
Good developers willing to work in a startup are hard to find
Good technical founders should hire excellent engineers
Growing is making release time longer (fear of break things) + (Releasing more features in one pack)
Growing requires a release plan
Growing requires e�cient system for managing big number of small releases
Growing requires the CEO to slowly moving away from the code
Growing will always produce a productivity drop-down
Growing will cause an initial drop-down in productivity but with following improvement of speed
In startups developers multi skilled (generalists) are more useful than gurus in one technology
It’s hard to say anything before the product is released
Not having a data schema and hiring a new developer is not a big deal
Past experience with similar product make development much more e↵ective and fast
Productivity will improve when the teams work together for some time (feeling)
Speed and flexibility is the most important factor in the beginning
SUG: Clear business direction help development to go faster and reduce wasted features
SUG: Customer development in parallel to software development is very important
SUG: Get out of the o�ce soon (to verify business assumption)
SUG: if you can’t pitch your idea in 5 seconds, something is wrong
SUG: Introduction tutor/course for new hires
SUG: Is better to have a drop-down in productivity when team grows than lose time before
SUG: Record relevant metrics from day 1 to see what’s happening with the product
SUG: Release weekly
SUG: To boost motivation start think day 1 how to make profit
SUG: After initial enthusiasm, you need revenue to boost morale
The more users the more feedback to manage (grow)
Time-pressure for media coverage led to productivity boost
Tradeo↵ - Drop-down productivity for lack of process (win) VS. Introducing early process (not worth it)
Using a rigid process led to problem with emergencies
Very satisfied on development approach

Table A.23: Closing Questions Codes

A.4.4 Interviews - Axial coding

During the generation of the theoretical framework, categories have been grouped
together, organized into a tree-like structure. At the highest level of abstraction
we identified 6 macro categories, in addition to the core category, that is “Speed
up development”, considered as the most urgent priority by the totality of the



www.manaraa.com

Appendix A. Appendix 217

respondents. This is extensively described in Subsection 4.3.4. Table A.24 sum-
marizes categories and subcategories identified in the study.

Category Subcategory
Speed-up development Working overtime to meet deadlines

Use of standard/known technologies
Development aided with well-integrated and simple tools
Externalize infrastructural complexity on third party solu-
tions
Keep simple and informal workflow

Evolutionary approach Find the product/market fit quickly
Uncertain conditions make long-term planning not viable

Product quality has low priority UX is the only important qualities
Suitable and limited functionalities
E�ciency emerges after using the product
User is fault-tolerant in innovative beta product
Cross-browser and cross-device compliance with aid of auto-
matic tools
Product should be reasonably ready-to-scale

Team is the catalyst of development High-impact of CTO/CEO background
Very small and co-located development team
Developers have big responsibilities (self-organized)
Multi-role and full-stack engineers
Skilled developers are essential for high speed
Team works under constant pressure
Limited need of formalities between team-members
Access to external expertise (Mentors)

Accumulated technical debt Minimal Project Management
Informal specification of functionalities
Rough and quick feasibility study
Lack of architectural design
Lack of automated testing
Tacit Knowledge replaces formal documentation

Growth harms performance Pay o↵ the accumulated technical debt
Need of re-engineer the product
Focus shifts to business concerns
Company and user size grow

Severe Lack of resources Time shortage
Limited human resources
Limited access to expertise

Table A.24: Grounded theory - Categories and sub-categories

In view of the relatively high complexity of the entire categories tree, the lower
level sub-groups are not shown in this section, rather they are presented in detail
in the theoretical model (see Section 6.3 or visit [221]).

A.4.5 Categories and engineering elements

Finally all the engineering elements identified in the follow-up results were mapped
on the categories identified in the theoretical framework (see detailed discussion
in Subsection 6.6.5).

Engineering elements Category Freq.
Very useful

Analysis of critical/important use case scenar-
ios

Rough and quick feasibility study 1

Table A.25 – Continued on next page



www.manaraa.com

Appendix A. Appendix 218

Table A.25 – Continued from previous page

Engineering elements Category Freq.
Asking user feedbacks for little adjustments
only

Find the product/market fit quickly 1

Assembla for managing tickets/tasks Use of well-integrated and simple tools 1
Basecamp for bugs/issues Use of well-integrated and simple tools 1
Break-down of big tasks in smaller tasks Lack of requirement engineering 1
Build APIs to export functionalities to mobile Limited number of suitable functionalities 1
Create ticket on-the-fly without any analysis
and design

Rough and quick feasibility study 1

Customer development and Lean startup
methodology

Find the product/market fit quickly 1

Deployment on Amazon infrastructure Externalize complexity to third party solutions 1
Developer responsible for designing,coding and
testing a feature.

Multi-role and full-stack engineers 1

Developing the product without having
schemas/diagrams

Lack of architectural design 1

Dropbox for sharing documents (x3) Use of well-integrated and simple tools 3
Electronic Kanban Wall for managing features
(Agile Zen)

Ticket-based tools to manage stories/features 1

Evolutionary prototyping/MVP (X4) Find the product/market fit quickly 4
Focus Group for assessing graphical aesthetic Find the product/market fit quickly 1
Focus Group for setting the main functionali-
ties

Find the product/market fit quickly 1

No need of formal analysis (past experience) Rough and quick feasibility study 1
Having Mentors in early stage Access to mentors expertise 1
Hip-chat for internal communication Use of well-integrated and simple tools 1
Lack of detailed documentation Tacit Knowledge 1
Lack of formal and automatic testing Lack of automated testing 1
List of features (paper notes) Use of well-integrated and simple tools 1
Mock-ups of the UI Lack of architectural design 1
Naive diagrams (disposable) instead of UML
communication diagrams

Lack of architectural design 1

Postpone potential choices which could ”limit” Uncertain conditions make long-term planning
not viable

1

Structure the app in a self-explanatory way
with Rails

Tacit Knowledge 2

Collecting initial feedbacks before coding Find the product/market fit quickly 1
Setting informal deadlines between co-founders Minimal Project Management 1
Short release time (weekly deployment) Light lean startup principles 1
Sketches (wireframe) Lack of architectural design 1
Skype for assigning bugs Use of well-integrated and simple tools 1
Starting from a previously developed technol-
ogy

Use of standard/known technologies 1

SVN for the codebase Use of well-integrated and simple tools 1
Let user test secondary functionality Lack of automated testing 1
Treating bugs as user stories Minimal Project Management 1
Trying the product internally to identify
bugs/issues

Lack of automated testing 1

Use Cases (Assembla) Rough and quick feasibility study 1
User feedbacks (by means of the ”super circle”
of users)

Find the product/market fit quickly 1

UserVoice for collecting users’ feedback Find the product/market fit quickly 1
Using a Whiteboard Use of well-integrated and simple tools 1
Using Linode to deploy the application Use of well-integrated and simple tools 1

Extremely useful
Amazon EC2 Externalize complexity to third party solutions 1
Analyzing competitors’ feedbacks Rough and quick feasibility study 1
Basecamp’s tasklist Lack of requirement engineering 1
CEO solving conflicts in development decisions Tacit Knowledge 1
Chef for deployment Use of well-integrated and simple tools 1
Clean-code Tacit Knowledge 1
Co-located team members Very small and co-located development team 1

Table A.25 – Continued on next page



www.manaraa.com

Appendix A. Appendix 219

Table A.25 – Continued from previous page

Engineering elements Category Freq.
Collecting feedback from pre-launch through
landing page

Light lean startup principles 1

Competitor’s analysis Rough and quick feasibility study 1
Consulting available gems before start imple-
menting

Rough and quick feasibility study 1

Multi-role and full-stack engineers (full stack
developers)

Multi-role and full-stack engineers 1

Daily stand-ups Keep simple and informal workflow 1
Database model Lack of architectural design 1
Deploy workflow (feature brench-¿ pull req -¿
Capistrano)

Use of well-integrated and simple tools 1

Development experience Skilled developers are essential for high speed 1
Feature meetings Naive task assignment mechanism 1
Flat hierarchy of the team Multi-role and full-stack engineers 1
Get early feedback from customers Find the product/market fit quickly 1
Git for code-base Use of well-integrated and simple tools 1
Github for having review of the code Use of well-integrated and simple tools 1
Having senior developers Skilled developers are essential for high speed 1
Heroku for deployment Externalize complexity to third party solutions 1
High-experience developers Skilled developers are essential for high speed 1
HTML5, CSS3 Use of well-integrated and simple tools 1
Hype of media for increasing moral of develop-
ers

High enthusiasm boosts productivity 1

Informal meetings for discussing biggest
changes only

Keep simple and informal workflow 1

Initial feature list (whiteboard) Use of well-integrated and simple tools 1
Initial survey to collect user feedbacks Light lean startup principles 1
Mind mapping instead of text writing commu-
nication

Tacit Knowledge 1

MySQL as DBMs Use of standard/known technologies 1
Only in-line comments to document the code Tacit Knowledge 1
Oral communication Tacit Knowledge 1
Personal experience for story estimation Rough and quick feasibility study 1
Post-it notes for tracing tasks and bugs Keep simple and informal workflow 1
Prototype an Hybrid Django/Php Use of standard/known technologies 1
RESTful API Use of standard/known technologies 1
Scrum board (by means of whiteboard with
post-it notes)

Keep simple and informal workflow 1

Self-imposed informal deadlines (Google
spread-sheet)

Minimal Project Management 1

Skype for communication Use of well-integrated and simple tools 1
Using an MVP approach Find the product/market fit quickly 1
Using whiteboard for main focus of the produc-
t/vision

Use of well-integrated and simple tools 1

Whiteboard for tracing the progress (modules
implemented)

Minimal Project Management 1

Hindsights
Crazy egg for ux testing Adapt to early feedbacks 1
Ruby On Rails that forced me to use an MVC
approach on development

Lack of architectural design 1

Basecamp and TODO-list Lack of Requirement Engineering 1
Delelop and release fast each time we had a new
feature.

Find the product/market fit quickly 1

High skilled team. Informal specification of functionalities 1
I wanted to focus more attention on designing
the interface and the analysis of the needs of
end users (the tourist)

Find the product/market fit quickly 1

90% of developers were full stack Multi-role and full-stack engineers 1
The excellence of the whole technical team Skilled developers are essential for high speed 1
Continuous deployment Find the product/market fit quickly 1
Also UX/CPO/UI could code Multi-role and full-stack engineers 1
Developers and the heterogeneity of knowledge Skilled developers are essential for high speed 1

Table A.25 – Continued on next page



www.manaraa.com

Appendix A. Appendix 220

Table A.25 – Continued from previous page

Engineering elements Category Freq.
Motivation to innovate all played an extremely
important role

Multi-role and full-stack engineers 1

Table A.25: Questionnaire results to theoretical framework

A.5 Technical debt, potential capability and speed
measurement

This appendix discusses how the numerical results related to potential capabil-
ity, technical debt and execution speed (presented in Subsection 6.6.4) have been
obtained to validate the high level relation of the model.

In particular we explain the process we utilized to measure three measures:

• Potential capability : a metric that represents the degree to which each com-
pany reflected the capability of reaction and flexibility to the dynamic en-
vironment during the development process, given by the three categories
that (theoretically) mostly a↵ect speed-up development (see Figure 6.7 and
Subsection A.5.1).

• Execution speed : a metric that represents the development speed of the
startup during di↵erent phases of the first release, computed by means of a
weighted average speed for each phase, by analyzing interview transcripts
looking at subcategories of Speed-up development (see Subsection A.5.2).

• Technical debt : a metric that represents the extent to which processes are
controlled, structured, planned and documented by means of engineering ar-
tifacts and practices. It has been computed by means of a weighted average
of the debt accumulated in each development phase observing subcategories
of accumulated technical debt, with consequences on startups’ growth (see
Subsection A.5.2).

A.5.1 Potential capability

To define the last measure - potential capability - we quantified characteristics
related to three theoretical categories, as discussed in Subsection 6.6.4: team is
catalyst of development (CAT4), product quality has low priority (CAT3), and
evolutionary approach (CAT2). According to the framework, these categories
contribute respectively to performance, e�ciency and e↵ectiveness - and we want
to attest the validity of these relations.

Following the example of the SMS, the procedure has been executed simulta-
neously in pair on the same screen. When necessary we performed an in-depth



www.manaraa.com

Appendix A. Appendix 221

review of the transcript5.
To begin the numerical evaluation, we associated a weight to each category

(Table A.26), reflecting the importance according to the empirical data (see Sub-
section 6.6.5). Factors related to the team have the largest impact on the score
(0.5). Factors related to the methodology undertaken are slightly more important
(0.3) than quality-related concerns (0.2).

ID Category Weight
CAT4 Skilled team is the catalyst of development 0.5
CAT2 Evolutionary approach 0.3
CAT3 Product quality has low priority 0.2

Table A.26: Capability - Weights

Subsequently we evaluated the three categories separately, assigning a score
to each company according to relevant subcategories6. In the next subsections
we present the detailed evaluation performed on the three categories. Each sub-
category has been evaluated using a discrete scale 0 to 2 where 0 represent a null
contribution, 1 is average, and 2 is above the average.

Team factors

Selected subcategories from team is the catalyst of development (CAT4):

• T1: High-impact of CTO background.
• T2: Very small and co-located development team.
• T3: Developers have big responsibilities (self-organized).
• Multi-role and full-stack engineers:

– T4: Engineers are responsible for marketing/sales/development (flat structure).
– T5: Generalists developers instead of specialists (full-stack).

• T6: Skilled developers are essential for high speed.
• T7: Team works under constant pressure.
• Limited need of formalities between team-members:

– T8: Positive impact of high co-location.
– T9: Previous working experience.
– T10: Knowing each other before starting the company.

The results of the evaluation are reported in Table A.27, where the weighted
score has been computed by summing up the individual scores obtained in subcat-
egory, multiplying the value by the weight previously defined and finally normalize

5If the conflicts persisted after an in-depth review of the transcript, we let a third expert
person (i.e. our supervisors) take the final decision.

6We excluded categories equally impacting all companies since contributing 0.



www.manaraa.com

Appendix A. Appendix 222

it on a scale 1 to 5 in order to be able to make a comparison with the technical
debt and execution speed.

Company T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Weighted
score

C1 2 1 2 1 1 1 2 1 2 1 2.78

C2 0 1 2 1 2 0 2 1 1 1 2.18

C3 1 0 1 0 0 1 1 2 1 0 1.39

C4 2 1 2 0 1 2 1 1 1 0 2.18

C5 2 1 1 1 1 1 1 1 1 0 1.98

C6 1 1 1 1 0 1 1 1 0 0 1.39

C7 1 0 1 1 0 0 1 2 1 0 1.39

C8 2 1 2 1 1 2 1 2 1 1 2.78

C9 1 1 2 0 1 1 1 2 2 2 2.58

C10 1 1 1 0 1 2 1 2 1 1 2.18

C11 2 1 2 1 1 2 2 2 2 2 3.37

C12 1 1 1 1 0 1 1 1 2 2 2.18

C13 1 0 1 1 1 1 0 1 0 2 1.59

Table A.27: Capability - Team

Development approach factors

Selected subcategories from Evolutionary approach (CAT2):

• E1: Flexibility and Reactiveness are main objectives.
• E2: Build a functioning prototype and iterate on it (MVP).
• E3: Progressively roll-out to larger number of people.
• E4: Focus on minimal set of functionalities (suitability).
• E5: Small iterations (release often).
• E6: Find product-market fit as soon as possible.

The results of the evaluation are reported in Table A.28.

Company E1 E2 E3 E4 E5 E6 Weighted
score

C1 1 1 1 1 2 1 0.83
C2 1 1 0 2 1 1 0.71
C3 1 1 1 1 1 1 0.71
C4 2 2 2 2 2 2 1.43
C5 1 1 1 1 1 2 0.83
C6 2 2 0 2 1 1 0.95
C7 2 2 1 2 2 2 1.31
C8 2 1 2 2 2 2 1.31
C9 1 1 1 1 1 1 0.71
C10 1 0 2 1 2 2 0.95
C11 2 2 2 1 2 2 1.31
C12 0 0 0 0 1 0 0.12
C13 0 0 1 0 1 0 0.24

Table A.28: Capability - Evolutionary



www.manaraa.com

Appendix A. Appendix 223

Quality factors

Selected subcategories from Product quality has low priority (CAT3):

• Q1: UX is the only important quality.
• Q2: Limited number of suitable functionalities.
• Q3: Users are fault-tolerant in innovative beta products.
• Q4: E�ciency emerges after using the product.
• Q5: Product should be reasonably ready-to-scale.

The results of the evaluation are reported in Table A.29.

Company Q1 Q2 Q3 Q4 Q5 Weighted
score

C1 1 1 1 1 0 0.32
C2 1 1 1 0 0 0.24
C3 1 0 1 0 0 0.16
C4 2 2 1 1 2 0.63
C5 1 1 1 1 2 0.48
C6 1 1 0 1 0 0.24
C7 2 0 0 0 1 0.24
C8 0 2 1 1 1 0.40
C9 1 1 1 1 0 0.32
C10 1 1 1 1 1 0.40
C11 0 2 0 1 1 0.32
C12 1 0 0 0 1 0.16
C13 1 0 1 0 1 0.24

Table A.29: Capability - Quality

Finally the three overall scores for potential capability have been computed by
summing up the weighted contributions of the three categories. Table A.30 show
the final scores of potential capability.

Company Potential capability
C1 3.928571429
C2 3.134920635
C3 2.261904762
C4 4.246031746
C5 3.293650794
C6 2.579365079
C7 2.936507937
C8 4.484126984
C9 3.611111111
C10 3.531746032
C11 5.000000000
C12 2.460317460
C13 2.063492063

Table A.30: Potential capability

In conclusion, all the operations executed in this appendix had the only scope



www.manaraa.com

Appendix A. Appendix 224

of attesting the correctness of relations between high-level categories of the frame-
work (see Subsection 6.6.4). Although the scores assigned are subject to re-
searchers personal bias, we executed the whole process in pair, and we provided
to other researchers the detailed rubrics and instructions necessaries for executing
similar evaluations.

A.5.2 Execution speed and Technical debt

Since both executions speed and technical debt have been computed by summing
up weighted contributions phase by phase, they are presented together. First,
the phases have been structured outlining the configuration of the interviews7:

• S1: idea/vision/objectives dissemination.
• S2: requirements engineering.
• S3: analysis.
• S4: architecture design.
• S5: coding/debugging.
• S6: verification and validation.
• S7: deployment.
• S8: general project management.

Afterwards, for each company we assigned a weight to each phase based on the
e↵ort declared by the respondents in the follow-up questionnaire8 (see Subsection
5.2.3). The weights are shown in Table A.31.

Company S1 S2 S3 S4 S5 S6 S7 S8 Sum

C1 0.02 0.08 0.11 0.04 0.23 0.23 0.08 0.23 1

C2 0.02 0.08 0.08 0.08 0.23 0.15 0.15 0.23 1

C3 0.02 0.11 0.04 0.08 0.45 0.06 0.02 0.23 1

C4 0.03 0.13 0.04 0.09 0.53 0.07 0.02 0.09 1

C5 0.03 0.09 0.09 0.13 0.40 0.16 0.02 0.09 1

C6 0.03 0.09 0.09 0.27 0.27 0.09 0.09 0.09 1

C7 0.03 0.09 0.04 0.04 0.44 0.22 0.04 0.09 1

C8 0.03 0.13 0.04 0.09 0.53 0.07 0.02 0.09 1

Table A.31 – Continued on next page

7Observe how we added a new “phase” that was not present initially in the structure of
the interview, but emerged from respondents, which typically started to answer our questions
of requirement engineering talking about how they transmitted the initial idea to other team
members.

8For the four companies, which didn’t filled the survey, we used average values, adjusted
according to interviews.



www.manaraa.com

Appendix A. Appendix 225

Table A.31 – Continued from previous page

Company S1 S2 S3 S4 S5 S6 S7 S8 Sum

C9 0.03 0.18 0.09 0.18 0.27 0.09 0.09 0.09 1

C10 0.02 0.14 0.07 0.11 0.25 0.07 0.07 0.27 1

C11 0.02 0.08 0.08 0.12 0.41 0.13 0.07 0.08 1

C12 0.03 0.13 0.13 0.18 0.35 0.07 0.02 0.09 1

C13 0.03 0.12 0.09 0.13 0.34 0.14 0.07 0.09 1

Table A.31: Weights

Figure A.4 is a graphical representation of the weights assigned to each phase
presented in Table A.31.

Figure A.4: Execution speed and Technical debt, by phase

As expected, more importance has been assigned to the implementation phase,
which occupied most of time and resources of the company. Afterwards we defined
a rubric table with extreme values indication phase by phase, used to assign a
score from 1 to 5 to each company, for execution speed and technical debt (see
Table A.32).

Idea dissemination (S1)
Score Execution speed Technical debt
1 The vision and objectives formally stated

with heavy documentation, which needs to
be manually updated.

The vision and objectives are maintained
through automatic tools, which promptly in-
form the team-members.

5 Vision clearly shared among team-members. Not having any means to share the vision.

Requirements engineering (S2)
Score Execution speed Technical debt
1 The company needs to execute a slow process

because of a long list of artifacts and formal-
ized specifications.

Requirements artifacts are complete, up-to-
date, accessible, structured, traceable and
with shared ownership.

Table A.32 – Continued on next page



www.manaraa.com

Appendix A. Appendix 226

Table A.32 – Continued from previous page

5 Use of highly automated tools and low-
precision artifacts to specify the initial list of
features/stories.

Features are not documented and shared
through oral communication and tacit knowl-
edge

Analysis (S3)
Score Execution speed Technical debt
1 Complete analysis requires formal processes

such as risk analysis, feasibility study, critical
evaluation of alternative technologies

Pre-defined modus operandi in view of all
possible risky situations, fully documented
and up-to-date.

5 The only analysis is conducted by logical
thinking and reasoning on possible scenarios.

Lack of minimal risk mitigation strategies,
and limiting decision taking.

Design (S4)
Score Execution speed Technical debt
1 Formal architecture analysis with detailed di-

agrams and extended design documentation.
Complete, traceable and up-to-date architec-
tural design artifacts or rigid use of estab-
lished framework.

5 Little up-front-design supported by well-
known framework solutions.

Home-made/No-standard or monolithic ar-
chitecture design without any support of doc-
umentation.

Implementation (S5)
Score Execution speed Technical debt
1 Heavy processes definition with lack of auto-

mated/integrated tools and use of out-of-code
documentation.

Use of coding standard and clean code acces-
sible by any developer (self-explanatory) with
advanced versioning system and task man-
agement. Collective ownership and critical
decision documented and traceable.

5 Lack of out-of-code documentation to update
and minimal workflow guidelines without any
burocracy and simple high automated/inte-
grated tools (advanced versioning system, on-
line collaborative ticket-management)

Lack of coding standards and documentation
of critical parts in and out of code. Lack of
any task management and versioning system

Verification and validation (S6)
Score Execution speed Technical debt
1 Systematic and rigorous quality assurance

processes.
High industry standard met for extensive
automatic testing systems with documented
test cases.

5 Highly automized and quick tests of critical
parts of the system only.

Complete lack of both automatic and manual
testing systems.

Deployment (S7)
Score Execution speed Technical debt
1 Formal deployment policies with multi-

staging system or heavily procedures manu-
ally conducted.

Advanced automatic tools or services for
multi-staging, easy-to-scale deployment, with
a defined documentation for deployment
steps.

5 New features directly deployed to production
with support of simple and automatic tools.

Manual deployment without any documented
procedure to follow.

General project management (S8)
Score Execution speed Technical debt
1 Heavy project management with detailed

scheduling, tracing team metrics...
Documented and up-to-date well-defined
workflow of activities with support of auto-
matic/online tools.

5 Minimal low-precision tools for task manage-
ment and internal deadlines for the critical
milestones.

Lack of any simple workflow with heavy use
of manual tools and oral communications.

Extreme values: 1 = very low; 5 = extremely high

Table A.32: Rubrics for execution speed and technical debt

We used these guidelines to consistently evaluate in pair the companies, based
on the data collected during the case study. The rubrics naturally emerged dur-



www.manaraa.com

Appendix A. Appendix 227

ing the process of evaluating the first companies, and were constantly updated
throughout the process. In case of disagreement, conflicts were examined in-
depth to reach a final consensus, sometimes by consulting interview transcripts.9

The results of the evaluation of execution speed is shown in Table A.33, and for
technical debt in Table A.34.

Company S1 S2 S3 S4 S5 S6 S7 S8 Weighted
score

C1 5 4 4 4 4 4 4 4 4.022556391
C2 3 4 4 4 3 4 4 5 3.977443609
C3 3 4 4 3 4 4 5 3 3.691729323
C4 4 5 5 5 4 3 3 4 4.17699115
C5 5 4 5 5 4 5 4 4 4.407079646
C6 3 3 5 4 4 4 4 4 3.973451327
C7 4 5 4 4 3 4 5 5 3.778761062
C8 4 3 3 4 5 4 4 5 4.442477876
C9 5 4 5 3 4 4 4 4 3.938053097
C10 3 4 3 4 3 4 4 4 3.659574468
C11 5 5 5 4 5 5 4 4 4.732290708
C12 3 4 4 4 4 5 5 5 4.150442478
C13 3 3 3 4 3 4 4 4 3.422812193
Average 3.85 4.00 4.15 4.00 3.85 4.15 4.15 4.23 4.03

Table A.33: Execution speed

Company S1 S2 S3 S4 S5 S6 S7 S8 Weighted
score

C1 2 4 2 4 2 4 4 4 3.052631579
C2 1 2 3 3 3 5 3 3 3.180451128
C3 2 3 1 4 2 4 3 3 2.601503759
C4 3 4 3 4 3 2 4 4 3.362831857
C5 3 3 3 3 3 2 3 3 3.14159292
C6 2 4 3 3 3 3 3 3 3.061946903
C7 1 2 1 3 3 2 4 4 3.03539823
C8 2 2 2 3 4 1 3 3 3.362831858
C9 2 3 2 2 3 3 3 3 2.796460177
C10 1 2 1 3 2 2 2 2 2.085106383
C11 2 3 3 3 4 2 3 3 3.451701932
C12 2 2 2 3 4 2 3 3 3.115044248
C13 2 3 3 3 3 3 3 3 2.973451327
Average 1.92 2.85 2.23 3.15 3.00 3.16 2.69 3.15 3.02

Table A.34: Technical debt

A.5.3 Statistical tests

Summarizing the results of the dimensions discussed in the previous subsections,
we present the results in Table A.35. Following, as discussed in Subsection 6.6.4,

9Observe that we tried to define two metrics which can be measured independently from
each other and from external factors (team experience, project type, . . . ). How these factors
can influence the amount of accumulated technical debt or the execution speed can vary case
by case. However, it is not in the scope of this thesis exploring those relations.



www.manaraa.com

Appendix A. Appendix 228

we conducted statistical tests using the analysis of variance to assess the existence
of relations between execution speed, potential capability and technical debt.

Company Execution
speed

Potential
capability

Technical
debt

C1 4.022556391 3.928571429 3.052631579

C2 3.977443609 3.134920635 3.180451128

C3 3.691729323 2.261904762 2.601503759

C4 4.17699115 4.246031746 3.362831857

C5 4.407079646 3.293650794 3.14159292

C6 3.973451327 2.579365079 3.061946903

C7 3.778761062 2.936507937 3.03539823

C8 4.442477876 4.484126984 3.362831858

C9 3.938053097 3.611111111 2.796460177

C10 3.659574468 3.531746032 2.085106383

C11 4.732290708 5.000000000 3.451701932

C12 4.150442478 2.46031746 3.115044248

C13 3.422812193 2.063492063 2.973451327

Table A.35: Quantification results of execution speed, technical debt and potential capability

First we defined two null hypotheses (H0): H01 = Startups do not release
the product faster when a capable team adopt a more evolutionary approach AND
with less quality constraints ; H02 = The execution speed does not increase the
amount of accumulated technical debt. Then we tested H01 and H02 with an one-
tailed test using Pearson’s product moment correlation coe�cient, with positive
association analysis, fixing the level of confidence to 95% which means we reject
H0 in case the p-value is lower than 0.05.

We concluded that, in our sample:

1. Higher values of Execution speed are strongly associated with higher values
for Technical debt (with a clear statistical significance, p-value: 0.002073).

2. Higher values of Execution speed are strongly associated with higher val-
ues for Potential capability (with a clear statistical significance, p-value:
0.004549).

To perform the Pearson’s correlation we verified two assumptions: a) data is
on interval scale; b) data is normally distributed.

In regard to assumption a) there is a considerable disagreement in the lit-
erature whether individual Likert items can be considered as interval-level data



www.manaraa.com

Appendix A. Appendix 229

[222] [223]. However, we provide a symmetric Likert scale with a middle category
and clearly defined linguistic qualifiers for each item (with the aid of the the-
oretical framework and rubrics, presented respectively in subsections A.5.1 and
A.5.2). Then, we made our best to present evaluations that are homogeneously
(with same interpretation) distributed across the di↵erent companies data. Fur-
thermore we improved the approximation of an interval-level measurement by
adjusting weights of scores of categories to equally space the ’distance’ between
the final scores with the use of validated follow-up questionnaire results (see Sub-
section 5.2.3).

In regard to assumption b) we validated it by conducting the Kolmogorov-
Smirnov (K-S) test. Each dimension has been tested separately, comparing them
with a normal distribution with the same mean and standard deviation. The
output gives the output statistic deviation (D) and then a p-value associated
with that statistic. Moreover each dimension’s distribution is presented by a
histogram and respective normal curve.

Figure A.5: Distribution of potential capability

The output of the potential capability K-S test is: D = 0.1117, p-value: 0.9909.



www.manaraa.com

Appendix A. Appendix 230

Figure A.6: Distribution of execution speed

The output of the execution speed K-S test is: D = 0.1223, p-value: 0.9769.

Figure A.7: Distribution of technical debt

The output of the technical debt K-S test is: D = 0.2214, p-value: 0.4799. As
shown above in all the cases the p-values are well above 0.05, so we accept that
there is no di↵erence between the observations and a set of random observations
drawn from a perfect normal distribution with the same mean and variance.



www.manaraa.com

Glossary

analysis study of feasibility of the project and risks, discovering possible miti-
gation strategies.

architecture design conceptualization and abstraction of possible solutions by
means of modelling processes.

CEO stands for chief executive o�cer, which represents an administrative po-
sition in a company, focusing on total management of an organization.
This role has main responsibility of developing and implementing high-level
strategies, making major corporate decision, managing the overall opera-
tions and resources of a company.

coding/debugging development process involving maintenance activity as de-
bugging and refactoring.

conceptual framework explains, either graphically or in narrative form, the
object of study (the key factors, constructs or variables) and the presumed
relationships among them. Framework can be rudimentary or elaborate,
theory driven or commonsensical, descriptive or causal [153].

control the process of collecting information procedures about the system, pro-
cess, person, or group of people in order to make necessary decisions about
each of them.

cross-sectional study a class of research methods that involve observation of
a phenomenon in a specific period of time.

CTO stands for chief technology o�cer, which represents an executive-level po-
sition in a company, focusing on scientific and technological issues. This
role has main responsibilities in long and short term technology directions,
focusing on research and development of software product.

customer development is a process that might be conducted in parallel with
the software development process. It consists of four main steps: customer
discovery, customer validation (that might go back to customer discovery
iteratively), customer creation and company building [17].

231



www.manaraa.com

Glossary 232

deployment process of making the software system available for use.

engineering activities are those tasks necessary to develop and maintain a
product from the idea conceptualization to the first release to the market
(requirements engineering, architecture design, verification and validation,
. . . ).

engineering elements are any method/practice/tool/framework/technique doc-
umentation/artifact contributing and supporting the engineering activities.

general project management is the discipline of planning, organizing, secur-
ing managing, leading and controlling resource to achieve specific goals.

growth an increase in the company size respect to the initial conditions in terms
of either employees or users/customers, and product complexity in terms of
handling an increasing number of feature requests.

highly scalable markets is a characteristic of startups that describes their ca-
pability to cope and perform with an highly expanding number of users.

idea/vision/objectives dissemination specification and dissemination of the
idea conception from the startup founders.

Lean startup methodology is a methodology involving three main steps: learn-
ing, building measure in cycle. Then validated learning, scientific experi-
mentation, and iterative product releases to shorten product development
cycles, measure progress. Important aspect is gaining the valuable customer
feedback as soon as possible by means of the minimum viable product [7].

minimum viable product is a version of a new product with the minimal set of
features, which allows a company to quickly release the product. This allows
a team to collect the maximum amount of knowledge about product/market
fit with the least e↵ort. MVP is a strategy and process directed toward
making an initial prototype by an iterative process of idea generation, data
collection, analysis and learning, minimizing the total time spent on each
iteration [7].

operational dynamics the approaches of the company in making decisions.

planning is the process of thinking and organizing the activities required to
achieve a desired goal. Planning involves the creation and maintenance of
any diagram or list of steps with timing and needed resources.



www.manaraa.com

Glossary 233

quality attributes are those overall factors that a↵ect run-time behavior, sys-
tem design, and user experience. They represent areas of concern that have
the potential for applications to impact across layers and tiers. Some of
these attributes are related to the overall system design, while others are
specific to run time, design time, or user centric issues.

requirements engineering process of discovering, documenting and maintain-
ing requirements specification.

software development strategy is the overall approach adopted by the com-
pany to develop the product with the help of engineering activities and
elements.

stabilization occurs when an organization reaches an operational steady state.
In other words, the processes are executed in a predictable, repeatable and
controllable way. Exception processes are minimal, if they exist at all.

structure denotes the definitions of components and relations that actually con-
stitute a particular process adopted during software development.

technical debt is a design or development approach thats expedient in the short
term but that increases complexity and is more costly in the long term.

technical practitioners are those practitioners who show the ability to demon-
strate an understanding of the engineering principles and knowledge in de-
veloping software products. In the case of startups, CEOs typically assume
the role of technical practitioner too.

trade-o↵ is a situation of compromising a quality aspect of a certain attribute
for gaining advantage of another quality aspect of the same or di↵erent
attribute.

user experience are the all aspects related to the end-users interaction with
the company, its services and its products. The first requirement for an ex-
emplary user experience is to meet the exact needs of the customer without
fuss or bother. Next comes simplicity and elegance that produce products
that are a joy to own, a joy to use. True user experience goes far beyond
giving customers what they say they want, or providing checklist features.
The selected definition is UX definition, undertaken by the companys per-
spective, illustrated in [224].

verification and validation testing processes and validation by means of cus-
tomers feedbacks (acceptance testing).


	Abstract
	Acknowledgments
	Introduction
	Background
	Overview
	Software development in startups
	Related areas
	Engineering in small companies
	Web engineering
	Lean startup methodology
	Venture management and financing


	Related work
	Research methodology
	Introduction
	Research goal definition
	Research questions
	Research methodology overview
	Rationale for methodology selection

	Systematic mapping study
	SMS - Process Overview
	SMS - Operation
	SMS - Screening of papers
	SMS - Keywording
	SMS - Data extraction and mapping
	SMS - Rigor-relevance assessment
	SMS - Ranking of studies
	SMS - Validity threats

	Case study
	Case study - Overview
	Case study - Design and execution
	Case study - Data collection
	Case study - Data analysis
	Case study - Theory generation
	Case study - Theory validation
	Case study - Framework modelling
	Case study - Validity threats


	Results and analysis
	Systematic mapping study
	Publications distribution
	Rigor and relevance
	Contextual features of startups
	State-of-the-art: summary (RQ-1)

	Case study
	Companies distribution
	Coding process overview
	Follow-up questionnaires results
	Comparison of methodologies: interviews and questionnaires


	Theoretical model
	Introduction to the model
	High-level framework
	Detailed framework
	Severe lack of resources (CAT7)
	Team is the catalyst of development (CAT4)
	Evolutionary approach (CAT2)
	Product quality has low priority (CAT3)
	Speed-up development (CAT1)
	Accumulated technical debt (CAT5)
	Initial growth hinders productivity (CAT6)

	Theory generation
	Theory implications (RQ-2)
	Theory validation
	Comparison with other frameworks
	Theoretical categories and existing literature
	Confounding factors from the literature
	High-level relations validity
	Engineering elements and categories
	Summary of validation

	Generalizability of the theory

	Dynamics and evolution of startups
	Overview
	Early-stage startups and methodologies
	Complexity and chaos in startups
	Cynefin dynamics in startups

	Early-stage startup lifecycle
	Evolutionary model
	Integrating scalable solutions
	Performance drop-down
	Improve desirable workflow patterns
	Long-term performance

	Dynamics and evolution summary (RQ-3)

	Summary
	RQ 1 - State of the art
	RQ 2 - State of practice
	RQ 3 - Dynamics and evolution in startups
	Lessons learned
	Validity threats
	External validity
	Internal validity
	Construct validity
	Conclusion validity

	Future work

	Conclusions
	References
	Appendix 
	Conventions
	Related areas review
	Managing software startups
	Software Engineering in the small
	Web engineering
	Lean/Agile development
	Grey literature Review
	Lifecycle models

	Systematic mapping study details
	Search Strings
	Selected studies overview
	Ranking quantification

	Case study details
	Interview package content
	Interview questions
	Interviews - Open coding
	Interviews - Axial coding
	Categories and engineering elements

	Technical debt, potential capability and speed measurement
	Potential capability
	Execution speed and Technical debt
	Statistical tests


	Glossary

